On the long range correlations of thermodynamic systems out of equilibrium


Abstract in English

Experiments show that macroscopic systems in a stationary nonequilibrium state exhibit long range correlations of the local thermodynamic variables. In previous papers we proposed a Hamilton-Jacobi equation for the nonequilibrium free energy as a basic principle of nonequilibrium thermodynamics. We show here how an equation for the two point correlations can be derived from the Hamilton-Jacobi equation for arbitrary transport coefficients for dynamics with both external fields and boundary reservoirs. In contrast with fluctuating hydrodynamics, this approach can be used to derive equations for correlations of any order. Generically, the solutions of the equation for the correlation functions are non-trivial and show that long range correlations are indeed a common feature of nonequilibrium systems. Finally, we establish a criterion to determine whether the local thermodynamic variables are positively or negatively correlated in terms of properties of the transport coefficients.

Download