No Arabic abstract
We present new multicolor photo-polarimetry of stars behind the Southern Coalsack. Analyzed together with multiband polarization data from the literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus clouds, we show that the wavelength of maximum polarization (lambda_max) is linearly correlated with the radiation environment of the grains. Using Far-Infrared emission data, we show that the large scatter seen in previous studies of lambda_max as a function of A_V is primarily due to line of sight effects causing some A_V measurements to not be a good tracer of the extinction (radiation field strength) seen by the grains being probed. The derived slopes in lambda_max vs. A_V, for the individual clouds, are consistent with a common value, while the zero intercepts scale with the average values of the ratios of total-to-selective extinction (R_V) for the individual clouds. Within each cloud we do not find direct correlations between lambda_max and R_V. The positive slope in consistent with recent developments in theory and indicating alignment driven by the radiation field. The present data cannot conclusively differentiate between direct radiative torques and alignment driven by H_2 formation. However, the small values of lambda_max(A_V=0), seen in several clouds, suggest a role for the latter, at least at the cloud surfaces. The scatter in the lambda_max vs. A_V relation is found to be associated with the characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We propose that this is partially due to locally increased plasma damping of the grain rotation caused by X-rays from the YSOs.
Interstellar polarization in the optical/infrared has long been known to be due to asymmetrical dust grains aligned with the magnetic field and can potentially provide a resource effective way to probe both the topology and strength of the magnetic field. However, to do so with confidence, the physics and variability of the alignment mechanisms must be quantitatively understood. The last 15 years has seen major advancements in both the theoretical and observational understanding of this problem. I here review the current state of the observational constraints on the grain alignment physics. While none of the three classes of proposed grain alignment theories: mechanical, paramagnetic relaxation and radiative alignment torque, can be viewed as having been empirically confirmed, the first two have failed some critical observational tests, whereas the latter has recently been given specific observational support and must now be viewed as the leading candidate.
Interstellar grain alignment studies are currently experiencing a renaissance due to the development of a new quantitative theory based on Radiative Alignment Torques (RAT). One of the distinguishing predictions of this theory is a dependence of the grain alignment efficiency on the relative angle ($Psi$) between the magnetic field and the anisotropy direction of the radiation field. In an earlier study we found observational evidence for such an effect from observations of the polarization around the star HD 97300 in the Chamaeleon I cloud. However, due to the large uncertainties in the measured visual extinctions, the result was uncertain. By acquiring explicit spectral classification of the polarization targets, we have sought to perform a more precise reanalysis of the existing polarimetry data. We have obtained new spectral types for the stars in our for our polarization sample, which we combine with photometric data from the literature to derive accurate visual extinctions for our sample of background field stars. This allows a high accuracy test of the grain alignment efficiency as a function of $Psi$. We confirm and improve the measured accuracy of the variability of the grain alignment efficiency with $Psi$, seen in the earlier study. We note that the grain temperature (heating) also shows a dependence on $Psi$ which we interpret as a natural effect of the projection of the grain surface to the illuminating radiation source. This dependence also allows us to derive an estimate of the fraction of aligned grains in the cloud.
A detailed study of interstellar polarization efficiency toward molecular clouds is used to attempt discrimination between grain alignment mechanisms in dense regions of the ISM. Background field stars are used to probe polarization efficiency in quiescent regions of dark clouds, yielding a dependence on visual extinction well-represented by a power law. No significant change in this behavior is observed in the transition region between the diffuse outer layers and dense inner regions of clouds, where icy mantles are formed, and we conclude that mantle formation has little or no effect on the efficiency of grain alignment. Young stellar objects generally exhibit greater polarization efficiency compared with field stars at comparable extinctions, displaying enhancements by factors of up to 6. Of the proposed alignment mechanisms, that based on radiative torques appears best able to explain the data. The attenuated external radiation field accounts for the observed polarization in quiescent regions, and radiation from the embedded stars themselves may enhance alignment in the lines of sight to YSOs. Enhancements in polarization efficiency observed in the ice features toward several YSOs are of greatest significance, as they demonstrate efficient alignment in cold molecular clouds associated with star formation.
The alignment of interstellar dust grains with magnetic fields provides a key method for measuring the strength and morphology of the fields. In turn, this provides a means to study the role of magnetic fields from diffuse gas to dense star-forming regions. The physical mechanism for aligning the grains has been a long-term subject of study and debate. The theory of radiative torques, in which an anisotropic radiation field imparts sufficient torques to align the grains while simultaneously spinning them to high rotational velocities, has passed a number of observational tests. Here we use archival polarization data in dense regions of the Orion molecular cloud (OMC-1) at 100, 350, and $850,mu$m to test the prediction that the alignment efficiency is dependent upon the relative orientations of the magnetic field and radiation anisotropy. We find that the expected polarization signal, with a 180-degree period, exists at all wavelengths out to radii of 1.5 arcminutes centered on the BNKL object in OMC-1. The probabilities that these signals would occur due to random noise are low ($lesssim$1%), and are lowest towards BNKL compared to the rest of the cloud. Additionally, the relative magnetic field to radiation anisotropy directions accord with theoretical predictions in that they agree to better than 15 degrees at $100,mu$m and 4 degrees at $350,mu$m.
Our purpose is to place firm observational constraints on the three most widely used theoretical models for the spatial configuration of the large-scale interstellar magnetic field in the Galactic disk, namely, the ring, the axisymmetric and the bisymmetric field models. We use the rotation measures (RMs) of low-latitude Galactic pulsars and combine them with their dispersion measures and estimated distances to map out the line-of-sight component of the interstellar magnetic field in the near half of the Galactic disk. We then fit our map of the line-of-sight field to the three aforementioned theoretical field models and discuss the acceptability of each fit, in order to determine whether the considered field model is allowed by the pulsar data or not. Strictly speaking, we find that all three field models are ruled out by the pulsar data. Furthermore, none of them appears to perform significantly better than the others. From this we conclude that the large-scale interstellar magnetic field in the Galactic disk has a more complex pattern than just circular, axisymmetric or bisymmetric.