Radiation trapping in 1D using the Markov chain formalism: A computational physics project


Abstract in English

A computational model study for complete frequency redistribution linear incoherent two-level atomic radiation trapping in optically dense media using the multiple scattering representation is presented. This model study discuss at length the influence of the spectral distributions, overall opacity and emission quantum yield to trapping distorted ensemble quantities stressing physical insight and with a non-specialist audience in mind. Macroscopic reemission yield, lifetime, steady state spectra and spatial distributions are calculated as a function of intrinsic emission yield, opacity and external excitation mode for Doppler, Lorentz and Voigt lineshapes. The work could constitute the basis for a final undergraduate or beginning graduate project in computational physics instruction and implements the analytical developments of the previous instalment of this contribution.

Download