Temperature dependent structural phase transitions of SrRuO3 thin films epitaxially grown on SrTiO3(001) single crystal substrates have been studied using high-resolution x-ray diffraction. In contrast to bulk SrRuO3, coherently strained epitaxial layers do not display cubic symmetry up to ~730 oC and remain tetragonal. Such behavior is believed to be induced by compressive strain between the SrRuO3 layer and SrTiO3 substrate due to lattice mismatch. The tetragonal symmetry during growth explains the single domain growth on miscut SrTiO3 substrates with step edges running along the [100] or [010] direction.
Molecular beam epitaxy of Fe3Si on GaAs(001) is studied in situ by grazing incidence x-ray diffraction. Layer-by-layer growth of Fe3Si films is observed at a low growth rate and substrate temperatures near 200 degrees Celsius. A damping of x-ray intensity oscillations due to a gradual surface roughening during growth is found. The corresponding sequence of coverages of the different terrace levels is obtained. The after-deposition surface recovery is very slow. Annealing at 310 degrees Celsius combined with the deposition of one monolayer of Fe3Si restores the surface to high perfection and minimal roughness. Our stoichiometric films possess long-range order and a high quality heteroepitaxial interface.
Piezoelectricity is inherent only in noncentrosymmetric materials, but a piezoelectric response can also be obtained in centrosymmetric crystals if subjected to inhomogeneous deformation. This phenomenon, known as flexoelectricity, affects the functional properties of insulators, particularly thin films of high permittivity materials. We have measured strain-gradient-induced polarization in single crystals of paraelectric SrTiO$_3$ as a function of temperature and orientation down to and below the 105 K phase transition. Estimates were obtained for all the components of the flexoelectric tensor, and calculations based on these indicate that local polarization around defects in SrTiO$_3$ may exceed the largest ferroelectric polarizations. A sign reversal of the flexoelectric response detected below the phase transition suggests that the ferroelastic domain walls of SrTiO$_3$ may be polar.
SrMoO4 was studied under compression up to 25 GPa by angle-dispersive x-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase to a monoclinic fergusonite phase at 12.2(9) GPa with cell parameters a = 5.265(9) A, b = 11.191(9) A, c = 5.195 (5) A, and beta = 90.9, Z = 4 at 13.1 GPa. There is no significant volume collapse at the phase transition. No additional phase transitions were observed and on release of pressure the initial phase is recovered, implying that the observed structural modifications are reversible. The reported transition appeared to be a ferroelastic second-order transformation producing a structure that is a monoclinic distortion of the low-pressure phase and was previously observed in compounds isostructural to SrMoO4. A possible mechanism for the transition is proposed and its character is discussed in terms of the present data and the Landau theory. Finally, the EOS is reported and the anisotropic compressibility of the studied crystal is discussed in terms of the compression of the Sr-O and Mo-O bonds.
We present a detailed x-ray diffraction study of the strain in InAs/GaSb superlattices grown by molecular beam epitaxy. The superlattices were grown with either InSb or GaAs interfaces. We show that the superlattice morphology, either planar or nanostructured, is dependent on the chemical bonds at the heterointerfaces. In both cases, the misfit strain has been determined for the superlattice layers and the interfaces. We also determined how the magnitude and sign of this strain is crucial in governing the morphology of the superlattice. Our analysis suggests that the growth of self-assembled nanostructures may be extended to many systems generally thought to have too small a lattice mismatch.
Lithium doped sodium niobate is an ecofriendly piezoelectric material that exhibits a variety of structural phase transitions with composition and temperature. We have investigated the phase stabilities of an important composition Li0.12Na0.88NbO3 (LNN12) using a combination of powder x-ray and neutron diffraction techniques in the temperature range 300 - 1100 K. Detailed Rietveld analyses of thermo-diffractograms show a variety of structural phase transitions ranging from non-polar antiferrodistortive to ferroelectric in nature. In the temperature range of 525 K to 675 K, unambiguous experimental evidence is shown for phase coexistence of orthorhombic paraelectric O1 phase (space group Cmcm) and orthorhombic ferroelectric O2 phase (space group Pmc21). The bp primitive lattice parameter of the ferroelectric orthorhombic phase (O2 phase) decreases, while the ap and cp primitive lattice parameters show normal increase with increase in temperature. Above 675 K, in the O1 phase, all lattice parameters come close to each other and increase continuously with increase of temperature, and around 925 K, ap parameter approaches bp parameter and thus the sample undergoes an orthorhombic to tetragonal phase transition. Further as temperature increases, the cp lattice parameter decreases, and finally approaches to ap parameter, and the sample transform into the cubic phase. The continuous change in the lattice parameters reveals that the successive phase transformations from orthorhombic O1 to high temperature tetragonal phase and finally to the cubic phase are not of a strong first order type in nature. We argue that application of chemical pressure as a result of Li substitution in NaNbO3 matrix, favours the freezing of zone centre phonons over the zone boundary phonons that are known to freeze in pure NaNbO3 as function of temperature.