No Arabic abstract
Deep space laser ranging missions like ASTROD I (Single-Spacecraft Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD, together with astrometry missions like GAIA and LATOR will be able to test relativistic gravity to an unprecedented level of accuracy. More precisely, these missions will enable us to test relativistic gravity to $10^{-7}-10^{-9}$, and will require 2nd post-Newtonian approximation of relevant theories of gravity. The first post-Newtonian approximation is valid to $10^{-6}$ and the second post-Newtonian is valid to $10^{-12}$ in the solar system. The scalar-tensor theory is widely discussed and used in tests of relativistic gravity, especially after the interests in inflation, cosmological constant and dark energy in cosmology. In the Lagrangian, intermediate-range gravity term has a similar form as cosmological term. Here we present the full second post-Newtonian approximation of the scalar-tensor theory including viable examples of intermediate-range gravity. We use Chandrasekhars approach to derive the metric coefficients and the equation of the hydrodynamics governing a perfect fluid in the 2nd post-Newtonian approximation in scalar-tensor theory; all terms inclusive of $O(c^{-4})$ are retained consistently in the equation of motion.
In this paper, second post-Newtonian approximation of Einstein-aether theory is obtained by Chandrasekhars approach. Five parameterized post-Newtonian parameters in first post-Newtonian approximation are presented after a time transformation and they are identical with previous works, in which $gamma=1$, $beta=1$ and two preferred-frame parameters remain. Meanwhile, in second post-Newtonian approximation, a parameter, which represents third order nonlinearity for gravity, is zero the same as in general relativity. For an application for future deep space laser ranging missions, we reduce the metric coefficients for light propagation in a case of $N$ point masses as a simplified model of the solar system. The resulting light deflection angle in second post-Newtonian approximation poses another constraint on the Einstein-aether theory.
Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modelling of the expected signals in extensions of General Relativity. In this paper we model the gravitational wave emission of inspiraling binaries in scalar Gauss-Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from General Relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity.
We use the effective field theory for gravitational bound states, proposed by Goldberger and Rothstein, to compute the interaction Lagrangian of a binary system at the second Post-Newtonian order. Throughout the calculation, we use a metric parametrization based on a temporal Kaluza-Klein decomposition and test the claim by Kol and Smolkin that this parametrization provides important calculational advantages. We demonstrate how to use the effective field theory method efficiently in precision calculations, and we reproduce known results for the second Post-Newtonian order equations of motion in harmonic gauge in a straightforward manner.
Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is a non-minimal coupling between the scalar field and the matter field (as chameleon field). Then, we derive the field equations governing the gravity and the scalar field. For a FRW universe filled only with ordinary matter, we obtain the modified Friedmann equations as well as the evolution equation of the scalar field. Furthermore, we assume the boundary of the universe to be enclosed by the dynamical apparent horizon which is in thermal equilibrium with the Hawking temperature. We obtain a general expression for the GSL of thermodynamics in the scalar-tensor gravity model. For some viable scalar-tensor models, we first obtain the evolutionary behaviors of the matter density, the scale factor, the Hubble parameter, the scalar field, the deceleration parameter as well as the effective equation of state (EoS) parameter. We conclude that in most of the models, the deceleration parameter approaches a de Sitter regime at late times, as expected. Also the effective EoS parameter acts like the LCDM model at late times. Finally, we examine the validity of the GSL for the selected models.
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective dissipative fluid describing scalar-tensor gravity. Surprisingly, we obtain simple expressions for the effective heat flux, temperature of gravity, shear and bulk viscosity, and entropy density, plus a generalized Fourier law in a consistent Eckart thermodynamical picture. Well-defined notions of temperature and approach to equilibrium, missing in the current thermodynamics of spacetime scenarios, naturally emerge.