Do you want to publish a course? Click here

Strong coupling limit/region of lattice QCD

225   0   0.0 ( 0 )
 Added by Akira Ohnishi
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We study the phase diagram of quark matter and nuclear properties based on the strong coupling expansion of lattice QCD. Both of baryon and finite coupling correction are found to have effects to extend the hadron phase to a larger mu direction relative to Tc. In a chiral RMF model with logarithmic sigma potential derived in the strong coupling limit of lattice QCD, we can avoid the chiral collapse and normal and hypernuclei properties are well described.



rate research

Read More

We examine the Brown-Rho scaling for meson masses in the strong coupling limit of lattice QCD with one species of staggered fermion. Analytical expression of meson masses is derived at finite temperature and chemical potential. We find that meson masses are approximately proportional to the equilibrium value of the chiral condensate, which evolves as a function of temperature and chemical potential.
We present results for lattice QCD with staggered fermions in the limit of infinite gauge coupling, obtained from a worm-type Monte Carlo algorithm on a discrete spatial lattice but with continuous Euclidean time. This is obtained by sending both the anisotropy parameter $xi=a_sigma/a_tau$ and the number of time-slices $N_tau$ to infinity, keeping the ratio $aT=xi/Ntau$ fixed. The obvious gain is that no continuum extrapolation $N_tau rightarrow infty$ has to be carried out. Moreover, the algorithm is faster and the sign problem disappears. We derive the continuous time partition function and the corresponding Hamiltonian formulation. We compare our computations with those on discrete lattices and study both zero and finite temperature properties of lattice QCD in this regime.
We discuss the QCD phase diagram from two different point of view. We first investigate the phase diagram structure in the strong coupling lattice QCD with Polyakov loop effects, and show that the the chiral and Z_{N_c} deconfinement transition boundaries deviate at finite mu as suggested from large N_c arguments. Next we discuss the possibility to probe the QCD critical point during prompt black hole formation processes. The thermodynamical evolution during the black hole formation would result in quark matter formation, and the critical point in isospin asymmetric matter may be swept. (T,mu_B) region probed in heavy-ion collisions and the black hole formation processes covers most of the critical point locations predicted in recent lattice Monte-Carlo simulations and chiral effective models.
We report on the first steps of an ongoing project to add gauge observables and gauge corrections to the well-studied strong coupling limit of staggered lattice QCD, which has been shown earlier to be amenable to numerical simulations by the worm algorithm in the chiral limit and at finite density. Here we show how to evaluate the expectation value of the Polyakov loop in the framework of the strong coupling limit at finite temperature, allowing to study confinement properties along with those of chiral symmetry breaking. We find the Polyakov loop to rise smoothly, thus signalling deconfinement. The non-analytic nature of the chiral phase transition is reflected in the derivative of the Polyakov loop. We also discuss how to construct an effective theory for non-zero lattice coupling, which is valid to $O(beta)$.
We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtained by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresponds to the point-splitting mesonic composite. Fermion determinant with this mean field under the anti-periodic boundary condition gives rise to a term which interpolates the effective potentials in the previously proposed zero and finite temperature mean field treatments. While the shift of the transition temperature at zero chemical potential is in the desirable direction and the phase boundary shape is improved, we find that the effects are too large to be compatible with the MDP simulation results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا