Do you want to publish a course? Click here

IRAC Observations of CO J=4-3 High-Velocity Cloud in the 30 Doradus Complex in the Large Magellanic Cloud

85   0   0.0 ( 0 )
 Added by Sungeun Kim
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the CO 2-1 observations against previously taken CO 4-3 observations and analyze the spatial distribution of young stellar objects (YSOs) within the cloud using the Spitzer IRAC observations of the 30 Doradus complex. Both peaks of CO 2-1 and 4-3 emitting clouds coincide with the densest region of the filaments where multiple shells are colliding. We find that the YSOs are clustered in the southern ridge of the warm and dense molecular gas clouds traced by CO J=4-3, indicating a filamentary structure of star formation throughout the 30 Doradus. We also find that some of Class I YSOs candidates which are likely to be associated with a high-velocity component of CO 4-3 emitting clouds are present. This is a bona fide place where the triggered star formation had happened and newly formed stars may have produced such a high-velocity outflow interacting with the surrounding molecular cloud material.



rate research

Read More

After 30 Doradus, N11 is the second largest and brightest nebula in the LMC. This large nebula has several OB associations with bright nebulae at its surroundings. N11 was previously mapped at the lowest rotational transitions of $^{12}$CO (J=1--0 and 2--1), and in some particular regions pointings of the $^{13}$CO J=1--0 and 2--1 lines were also performed. Using ASTE we mapped the whole extension of the N11 nebula in the $^{12}$CO J=3--2 line, and three sub-regions in the $^{13}$CO J=3--2 line. The regions mapped in the $^{13}$CO J=3--2 were selected based on that they may be exposed to the radiation at different ways: a region lying over the nebula related to the OB association LH10 (N11B), another one that it is associated with the southern part of the nebula related to the OB association LH13 (N11D), and finally a farther area at the southwest without any embedded OB association (N11I). We found that the morphology of the molecular clouds lying in each region shows some signatures that could be explained by the expansion of the nebulae and the action of the radiation. Fragmentation generated in a molecular shell due to the expansion of the N11 nebula is suggested. The integrated line ratios $^{12}$CO/$^{13}$CO show evidences of selective photodissociation of the $^{13}$CO, and probably other mechanisms such as chemical fractionation. The CO contribution to the continuum at 870 $mu$m was directly derived. The distribution of the integrated line ratios $^{12}$CO J=3--2/2--1 show hints of stellar feedback in N11B and N11D. The ratio between the virial and LTE mass (M$_{rm vir}$/M$_{rm LTE}$) is higher than unity in all analyzed molecular clumps, which suggests that the clumps are not gravitationally bounded and may be supported by external pressure. A non-LTE analysis suggests that we are mapping gas with densities about a few 10$^{3}$ cm$^{-3}$.
With an aim of probing the physical conditions and excitation mechanisms of warm molecular gas in individual star-forming regions, we performed Herschel SPIRE FTS observations of 30 Doradus in the LMC. In our FTS observations, important FIR cooling lines in the ISM, including CO J=4-3 to 13-12, [CI] 370 micron, and [NII] 205 micron, were clearly detected. In combination with ground-based CO data, we then constructed CO spectral line energy distributions (SLEDs) on 10 pc scales over a 60 pc x 60 pc area and found that the shape of the observed CO SLEDs considerably changes across 30 Doradus, e.g., the peak transition varies from J=6-5 to 10-9, while the slope characterized by the high-to-intermediate J ratio ranges from 0.4 to 1.8. To examine the source(s) of these variations in CO transitions, we analyzed the CO observations, along with [CII] 158 micron, [CI] 370 micron, [OI] 145 micron, H2 0-0 S(3), and FIR luminosity data, using state-of-the-art models of PDRs and shocks. Our detailed modeling showed that the observed CO emission likely originates from highly-compressed (thermal pressure ~ 1e7-1e9 K cm-3) clumps on 0.7-2 pc scales, which could be produced by either UV photons (UV radiation field ~ 1e3-1e5 Mathis fields) or low-velocity C-type shocks (pre-shock medium density ~ 1e4-1e6 cm-3 and shock velocity ~ 5-10 km s-1). Considering the stellar content in 30 Doradus, however, we tentatively excluded the stellar origin of CO excitation and concluded that low-velocity shocks driven by kpc scale processes (e.g., interaction between the Milky Way and the Magellanic Clouds) are likely the dominant source of heating for CO. The shocked CO-bright medium was then found to be warm (temperature ~ 100-500 K) and surrounded by a UV-regulated low pressure component (a few (1e4-1e5) K cm-3) that is bright in [CII] 158 micron, [CI] 370 micron, [OI] 145 micron, and FIR dust continuum emission.
We present measurements of positions and relative proper motions in the 30 Doradus region of the Large Magellanic Cloud (LMC). We detail the construction of a single-epoch astrometric reference frame, based on specially-designed observations obtained with the two main imaging instruments ACS/WFC and WFC3/UVIS onboard the Hubble Space Telescope (HST). Internal comparisons indicate a sub milli-arc-second (mas) precision in the positions and the presence of semi-periodic systematics with a mean amplitude of ~0.8 mas. We combined these observations with numerous archival images taken with WFPC2 and spanning 17 years. The precision of the resulting proper motions for well-measured stars around the massive cluster R 136 can be as good as ~20 microarcsec/yr, although the true accuracy of proper motions is generally lower due to the residual systematic errors. The observed proper-motion dispersion for our highest-quality measurements is ~0.1 mas/yr. Our catalog of positions and proper motions contains 86,590 stars down to V~25 and over a total area of ~70 square arcmin. We examined the proper motions of 105 relatively bright stars and identified a total of 6 candidate runaway stars. We are able to tentatively confirm the runaway status of star VFTS 285, consistent with the findings from line-of-sight velocities, and to show that this star has likely been ejected from R 136. This study demonstrates that with HST it is now possible to reliably measure proper motions of individual stars in the nearest dwarf galaxies such as the LMC.
We have mapped the Orion-A Giant Molecular Cloud in the CO (J=4-3) line with the Tsukuba 30-cm submillimeter telescope.The map covered a 7.125 deg^2 area with a 9 resolution, including main components of the cloud such as Orion Nebula, OMC-2/3, and L1641-N. The most intense emission was detected toward the Orion KL region. The integrated intensity ratio between CO (J=4-3) and CO (J=1-0) was derived using data from the Columbia-Univ. de Chile CO survey, which was carried out with a comparable angular resolution. The ratio was r_{4-3/1-0} ~ 0.2 in the southern region of the cloud and 0.4-0.8 at star forming regions. We found a trend that the ratio shows higher value at edges of the cloud. In particular the ratio at the north-eastern edge of the cloud at (l, b) = (208.375 deg, -19.0 deg) shows the specific highest value of 1.1. The physical condition of the molecular gas in the cloud was estimated by non-LTE calculation. The result indicates that the kinetic temperature has a gradient from north (Tkin=80 K) to south (20 K). The estimation shows that the gas associated with the edge of the cloud is warm (Tkin~60 K), dense (n_{H_2}~10^4 cm^{-3}), and optically thin, which may be explained by heating and sweeping of interstellar materials from OB clusters.
As a part of an ongoing effort to characterise the young stellar populations in the Large Magellanic Cloud, we present HST-WFPC2 broad and narrow band imaging of two fields with recent star formation activity in the Tarantula region. A population of objects with Halpha and/or Balmer continuum excess was identified. On account of the intense Halpha emission (equivalent widths up to several tens of Angstroms), its correlation with the Balmer continuum excess and the stars location on the HR diagram, we interpret them as low mass (~1-2 Mo) Pre-Main Sequence stars. In this framework, the data show that coeval high and low mass stars have significantly different spatial distributions, implying that star formation processes for different ranges of stellar masses are rather different and/or require different initial conditions. We find that the overall slope of the mass function of the young population is somewhat steeper than the classical Salpeter value and that the star formation density of this young component is 0.2-0.4 Mo/yr/kpc2, i.e. intermediate between the value for an active spiral disk and that of a starburst region. The uncertainties associated with the determination of the slope of the mass function and the star formation density are thoroughly discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا