No Arabic abstract
In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain constant temperature and to reproduce the underlying physical phenomena in non-equilibrium situations. The common practice of switching-off the Langevin thermostat in the flow direction is also critically revisited. The efficiency of different weight functions for the DPD thermostat is quantitatively analyzed as a function of the solvent quality and the non-equilibrium situation.
Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the compressibility and the diffusion coefficient. We assess the quality of these integration schemes, including variants based on a recently suggested self-consistent approach, and examine their relative performance. Implications of integrator-induced effects are discussed.
We introduce a scheme for deriving an optimally-parametrised Langevin dynamics of few collective variables from data generated in molecular dynamics simulations. The drift and the position-dependent diffusion profiles governing the Langevin dynamics are expressed as explicit averages over the input trajectories. The proposed strategy is applicable to cases when the input trajectories are generated by subjecting the system to a external time-dependent force (as opposed to canonically-equilibrated trajectories). Secondly, it provides an explicit control on the statistical uncertainty of the drift and diffusion profiles. These features lend to the possibility of designing the external force driving the system so to maximize the accuracy of the drift and diffusions profile throughout the phase space of interest. Quantitative criteria are also provided to assess a posteriori the satisfiability of the requisites for applying the method, namely the Markovian character of the stochastic dynamics of the collective variables.
We consider the Langevin dynamics of a many-body system of interacting particles in $d$ dimensions, in a very general setting suitable to model several out-of-equilibrium situations, such as liquid and glass rheology, active self-propelled particles, and glassy aging dynamics. The pair interaction potential is generic, and can be chosen to model colloids, atomic liquids, and granular materials. In the limit ${dtoinfty}$, we show that the dynamics can be exactly reduced to a single one-dimensional effective stochastic equation, with an effective thermal bath described by kernels that have to be determined self-consistently. We present two complementary derivations, via a dynamical cavity method and via a path-integral approach. From the effective stochastic equation, one can compute dynamical observables such as pressure, shear stress, particle mean-square displacement, and the associated response function. As an application of our results, we derive dynamically the `state-following equations that describe the response of a glass to quasistatic perturbations, thus bypassing the use of replicas. The article is written in a modular way, that allows the reader to skip the details of the derivations and focus on the physical setting and the main results.
We show that a recently introduced stochastic thermostat [J. Chem. Phys. 126 (2007) 014101] can be considered as a global version of the Langevin thermostat. We compare the global scheme and the local one (Langevin) from a formal point of view and through practical calculations on a model Lennard-Jones liquid. At variance with the local scheme, the global thermostat preserves the dynamical properties for a wide range of coupling parameters, and allows for a faster sampling of the phase-space.
Equilibrium and out-of-equilibrium transitions of an off-lattice protein model have been identified and studied. In particular, the out-of-equilibrium dynamics of the protein undergoing mechanical unfolding is investigated, and by using a work fluctuation relation, the system free energy landscape is evaluated. Three different structural transitions are identified along the unfolding pathways. Furthermore, the reconstruction of the the free and potential energy profiles in terms of inherent structure formalism allows us to put in direct correspondence these transitions with the equilibrium thermal transitions relevant for protein folding/unfolding. Through the study of the fluctuations of the protein structure at different temperatures, we identify the dynamical transitions, related to configurational rearrangements of the protein, which are precursors of the thermal transitions.