Geometric gradient-flow dynamics with singular solutions


Abstract in English

The gradient-flow dynamics of an arbitrary geometric quantity is derived using a generalization of Darcys Law. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanics. Eulerian equations for self-organization of scalars, 1-forms and 2-forms are shown to reduce to nonlocal characteristic equations. We identify singular solutions of these equations corresponding to collapsed (clumped) states and discuss their evolution.

Download