Do you want to publish a course? Click here

Magneto-oscillations due to electron-electron interactions in the ac conductivity of a 2D electron gas

205   0   0.0 ( 0 )
 Added by Tigran Sedrakyan
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electron-electron interactions give rise to the correction, deltasigma^{int}(omega), to the ac magnetoconductivity, sigma(omega), of a clean 2D electron gas that is periodic in omega_c^{-1}, where omega_c is the cyclotron frequency. Unlike conventional harmonics of the cyclotron resonance, which are periodic with omega, this correction is periodic with omega^{3/2}. Oscillations in deltasigma^{int}(omega) develop at low magnetic fields, omega_cllomega, when the conventional harmonics are suppressed by the disorder. Their origin is a {em double} backscattering of an electron from the impurity-induced Friedel oscillations. During the time simomega^{-1} between the two backscattering events the electron travels only a {em small portion} of the Larmour circle.



rate research

Read More

Using very-high mobility GaAs/AlGaAs 2D electron Hall bar samples, we have experimentally studied the photoresistance/photovoltaic oscillations induced by microwave irradiation in the regime where both 1/B and B-periodic oscillations can be observed. In the frequency range between 27 and 130 GHz we found that these two types of oscillations are decoupled from each other, consistent with the respective models that 1/B oscillations occur in bulk while the B-oscillations occur along the edges of the Hall bars. In contrast to the original report of this phenomenon (Ref. 1) the periodicity of the B-oscillations in our samples are found to be independent of L, the length of the Hall bar section between voltage measuring leads.
The effect of electron-electron interaction on the low-temperature conductivity of graphene is investigated experimentally. Unlike in other two-dimensional systems, the electron-electron interaction correction in graphene is sensitive to the details of disorder. A new temperature regime of the interaction correction is observed where quantum interference is suppressed by intra-valley scattering. We determine the value of the interaction parameter, F_0 ~ -0.1, and show that its small value is due to the chiral nature of interacting electrons.
We report on the experimental observation of the quantum oscillations in microwave magnetoabsorption of a high-mobility two-dimensional electron gas induced by Landau quantization. Using original resonance-cavity technique, we observe two kinds of oscillations in the magnetoabsorption originating from inter-Landau-level and intra-Landau-level transitions. The experimental observations are in full accordance with theoretical predictions. Presented theory also explains why similar quantum oscillations are not observed in transmission and reflection experiments on high-mobility structures despite of very strong effect of microwaves on the dc resistance in the same samples.
Electron-electron interactions (EEIs) in 2D van der Waals structures is one of the topics with high current interest in physics. We report the observation of a negative parabolic magnetoresistance (MR) in multilayer 2D semiconductor InSe beyond the low-field weak localization/antilocalization regime, and provide evidence for the EEI origin of this MR behavior. Further, we analyze this negative parabolic MR and other observed quantum transport signatures of EEIs (temperature dependent conductance and Hall coefficient) within the framework of Fermi liquid theory and extract the gate voltage tunable Fermi liquid parameter $F_0^sigma$ which quantifies the electron spin-exchange interaction strength.
On a high-mobility 2D electron gas we have observed, in strong magnetic fields (omega_{c} tau > 1), a parabolic negative magnetoresistance caused by electron-electron interactions in the regime of k_{B} T tau / hbar ~ 1, which is the transition from the diffusive to the ballistic regime. From the temperature dependence of this magnetoresistance the interaction correction to the conductivity delta sigma_{xx}^{ee}(T) is obtained in the situation of a long-range fluctuation potential and strong magnetic field. The results are compared with predictions of the new theory of interaction-induced magnetoresistance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا