Do you want to publish a course? Click here

Modelling the Galactic bar using OGLE-II Red Clump Giant Stars

130   0   0.0 ( 0 )
 Added by Nicholas Rattenbury
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Red clump giant stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration database to constrain analytic tri-axial models for the Galactic bar. We find the bar major axis is oriented at an angle of 24 - 27 degrees to the Sun-Galactic centre line-of-sight. The ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane x_0, y_0, and vertical bar scale length z_0, is x_0 : y_0 : z_0 = 10 : 3.5 : 2.6, suggesting a slightly more prolate bar structure than the working model of Gerhard (2002) which gives the scale length ratios as x_0 : y_0 : z_0 = 10 : 4 : 3 .



rate research

Read More

We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have $2.94times 10^6$ RC stars over a viewing area of $90.25 ,textrm{deg}^2$. The data include the number counts, mean distance modulus ($mu$), dispersion in $mu$ and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the $E_3$ model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane $x_{0},y_{0}$, and vertical bar scale length $z_0$, is $x_0:y_0:z_0 approx 1.00:0.43:0.40$ (close to being prolate). The scale length of the stellar density profile along the bars major axis is $sim$ 0.67 kpc and has an angle of $29.4^circ$, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is $2.78 times 10^6$, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is $sim 5.8%$. We estimate the total mass of the bar is $sim 1.8 times 10^{10} M_odot$. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.
291 - S. S. Shan , H. Zhu , W. W. Tian 2018
We carry out a project to independently measure the distances of supernova remnants (SNRs) in the first quadrant of the Galaxy. In this project, red clump (RC) stars are used as standard candles and extinction probes to build the optical extinction (A$_V$) - distance(D) relation in each direction of extinction-known SNRs. 15 SNRs distances are well determined. Among them, the distances of G65.8-0.5, G66.0-0.0 and G67.6+0.9 are given for the first time. We also obtain 32 upper/lower limits of distances, and the distances to G5.7-0.1, G15.1-1.6, G28.8+1.5 and G78.2+2.1 are constrained. Most of the distances measured by the RC method are consistent with previous results. The RC method provides an independent access to the distances of SNRs.
75 - D. Bersier 2000
I determine a distance to the Fornax dwarf galaxy using stars in the red clump and at the tip of the red giant branch. They are in very good agreement, with $mu_0 = 20.66 mag$. Comparing the magnitudes of the tip of the red giant branch and of the red clump in Fornax, Carina and the Magellanic Clouds, I propose a possible solution to the problem of the discrepancy between these two types of distance measurements.
We propose a new way to search for hypervelocity stars in the Galactic bulge, by using red clump (RC) giants, that are good distance indicators. The 2nd Gaia Data Release and the near-IR data from the VISTA Variables in the Via Lactea (VVV) Survey led to the selection of a volume limited sample of 34 bulge RC stars. A search in this combined data set leads to the discovery of seven candidate hypervelocity red clump stars in the Milky Way bulge. Based on this search we estimate the total production rate of hypervelocity RC stars from the central supermassive black hole (SMBH) to be $N_{HVRC} = 3.26 times 10^{-4} $ yr$^{-1}$. This opens up the possibility of finding larger samples of hypervelocity stars in the Galactic bulge using future surveys, closer to their main production site, if they are originated by interactions of binaries with the central SMBH.
The photometry data base of the second phase of the OGLE microlensing experiment, OGLE-II, is a rich source of information about the kinematics and structure of the Galaxy. In this work we use the OGLE-II proper motion catalogue to identify candidate stars which have high proper motions. 521 stars with proper motion mu > 50 mas/yr in the OGLE-II proper motion catalogue (Sumi 2004) were cross-identified with stars in the MACHO high proper motion catalogue, and the DENIS and 2MASS infra-red photometry catalogues. Photometric distances were computed for stars with colours consistent with G/K and M type stars. 6 stars were newly identified as possible nearby (< 50 pc) M dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا