Distance preserving mappings from ternary vectors to permutations


Abstract in English

Distance-preserving mappings (DPMs) are mappings from the set of all q-ary vectors of a fixed length to the set of permutations of the same or longer length such that every two distinct vectors are mapped to permutations with the same or even larger Hamming distance than that of the vectors. In this paper, we propose a construction of DPMs from ternary vectors. The constructed DPMs improve the lower bounds on the maximal size of permutation arrays.

Download