Crossover behavior in fluids with Coulomb interactions


Abstract in English

According to extensive experimental findings, the Ginzburg temperature $t_{G}$ for ionic fluids differs substantially from that of nonionic fluids [Schroer W., Weig{a}rtner H. 2004 {it Pure Appl. Chem.} {bf 76} 19]. A theoretical investigation of this outcome is proposed here by a mean field analysis of the interplay of short and long range interactions on the value of $t_{G}$. We consider a quite general continuous charge-asymmetric model made of charged hard spheres with additional short-range interactions (without electrostatic interactions the model belongs to the same universality class as the 3D Ising model). The effective Landau-Ginzburg Hamiltonian of the full system near its gas-liquid critical point is derived from which the Ginzburg temperature is calculated as a function of the ionicity. The results obtained in this way for $t_{G}$ are in good qualitative and sufficient quantitative agreement with available experimental data.

Download