Human cell simulation


Abstract in English

In this study, we present a state-of-art model; we call SYRIA, to simulate the activity of ventricular myocardial cell as an example of simulating a human cell, in which we use the latest mathematical models of cardiac cell. We rely on O'Hara (O'Hara, et al., 2011) for modeling electrical activity, ions hemostasis, and contracting. Our presented model takes into consideration the role of potassium channels KATP, chloride channels, volume regulation channels based on the Kyoto model (A.Takeuchi, 2006), PH regulation channels based on Leem model (Leem, et al., 1999), and the improvement of the values of some variables based on the results of modern experiments, especially concentrations of ions within the mitochondrial and cytoplasm, the values of calcium buffers in the SR, values of the conductance of membrane channels, and concentrations of metabolites in the mitochondria. The previous models have been linked to a mitochondrial model based on Kembro (Kembro, et al., 2013). The SYRIA model is based on the integration and improvement of the best known models in a hierarchical structure that facilitates understanding, monitoring and reuse, we also present models for testing drugs and some external influences. The programming process is done using blocks of M-file and S-function in Simulink. By comparing the results obtained from the simulation with the laboratory results, we observe that computer simulations give results within the normal physiological range .

References used

A.Takeuchi, Shuji Tatsumi, Nobuaki Sarai, Keisuke Terashima,Satoshi Matsuoka, and Akinori Noma. 2006. Modelling Cl− homeostasis and volume regulation of the cardiac cell. J. Gen. Physiol. Volume 128 Number 5 November 2006 495–507. 2006.
Allen, Kentish. 1985. The cellular basis of the length-tension relation in cardiac muscle. 1985 Sep;17(9):821-40. 1985
Antzelevitch, Charles. 2010. M Cells in the Human Heart. Circ Res. 2010 Mar 19; 106(5): 815–817. 2010.
Beuckelmann, Dirk J., Nabauer, Michael and Erdmann., and Erland. 1992. Intracellular Calcium Handling in Isolated Ventricular Myocytes From Patients With Terminal Heart Failure. Circulation ;85:1046-1055. 1992.
Bose, Salil, et al. 2003. Metabolic Network Control of Oxidative Phosphorylation MULTIPLE ROLES OF INORGANIC PHOSPHATE. JBC .Vol. 278, No. 40, Issue of October 3, pp. 39155–39165,. 2003.
Chen, Yeong-Renn and Zweier., Jay L. 2014. CARDIAC MITOCHONDRIA AND ROS GENERATION. Circ Res. 2014 Jan 31; 114(3): 524–537. 2014.
Glukhov, Alexey, et al. 2010. Transmural Dispersion of Repolarization in Failing and Non Failing Human Ventricle. Circ Res. 2010 Mar 19; 106(5): 981–991. 2010.
Hector Barajas-Martínez, Dan Hu, , Robert J. Goodrow Jr., Frederic Joyce, Charles Antzelevitch. 2013. Electrophysiologic Characteristics and Pharmacologic Response of Human Cardiomyocytes Isolated from a Patient with Hypertrophic Cardiomyopathy. Pacing Clin Electrophysiol. 2013 December ; 36(12). 2013.
José Marín-García. 2013. Mitochondria and Their Role in Cardiovascular Disease. New York 2013 : Springer, 2013. 978-1-4614-4598-2.
Wei, AnChi, et al. 2011. Mitochondrial Energetics, pH Regulation, and Ion Dynamics: Acomputational-experimental approach. Biophys J. 2011 Jun 22; 100(12): 2894–2903. 2011.
Amanfu, Robert K. and Saucerman., Jeffrey J. 2011. CARDIAC MODELS IN DRUG DISCOVERY AND DEVELOPMENT: A REVIEW. Crit Rev Biomed Eng. 2011; 39(5): 379–395. 2011.

Download