Adversarial Attacks on Deep Learning Systems


Abstract in English

Deep learning is at the heart of the current rise of artificial intelligence. In the field of Computer Vision, it has become the workhorse for applications ranging from self-driving cars to surveillance and security. Whereas deep neural networks have demonstrated phenomenal success (often beyond human capabilities) in solving complex problems, recent studies show that they are vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrect outputs. For images, such perturbations are often too small to be perceptible, yet they completely fool the deep learning models. Adversarial attacks pose a serious threat to the success of deep learning in practice. This fact has recently lead to a large influx of contributions in this direction. This article presents a survey on adversarial attacks on deep learning in Computer Vision. We review the works that design adversarial attacks, analyze the existence of such attacks and propose defenses against them

References used

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno: “Robust Physical-World Attacks on Deep Learning Models”, 2017; arXiv:1707.08945.
Wieland Brendel, Jonas Rauber: “Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models”, 2017; arXiv:1712.04248.
Samuel G. Finlayson, Isaac S. Kohane: “Adversarial Attacks Against Medical Deep Learning Systems”, 2018; arXiv:1804.05296.
Naveed Akhtar: “Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey”, 2018; arXiv:1801.00553.
Ian J. Goodfellow, Jonathon Shlens: “Explaining and Harnessing Adversarial Examples”, 2014; arXiv:1412.6572.
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville: “Generative Adversarial Networks”, 2014; arXiv:1406.2661.
Pouya Samangouei, Maya Kabkab: “Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models”, 2018; arXiv:1805.06605.

Download