In this article, powerful approximate analytical methods, called Adomian decomposition method and variational iteration method are introduced and applied to obtaining the approximate analytical solutions for an important models of linear and non-linear partial differential equations such as ( nonlinear Klein Gordon equation - nonlinear wave equation - linear telegraph equation - nonlinear diffusion convection equation ) . The studied examples are used to reveal that those methods are very effective and convenient for solving linear and nonlinear partial differential equations . Numerical results and comparisons with the exact solution are included to show validity, ability, accuracy, strength and effectiveness of those techniques.