Improving the efficiency of Solar Photovoltaic Power Systems using a Maximum Power Point Tracker Controller based on DC-DC Boost Converter


Abstract in English

This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control method. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.

References used

ESRAM, T.; CHAPMAN, P. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion 22, 2007, 439–449
RAVI, N.; RAVI, M. A study on Maximum Power Point Tracking techniques for Photovoltaic systems. International Journal of Engineering and Technical Research. 3, 2015, 189-196
SHARMA, D.; PUROHIT, G. Hybrid Control Method for Maximum Power Point Tracking (MPPT) of Solar PV Power Generating System. Australian Journal of Basic and Applied Sciences. 8, 2014, 255-262

Download