Removal Efficiency of Polycyclic Aromatic Hydrocarbons From Synthetic Water Samples By Electrocoagulation Processes


Abstract in English

In the present work, batch electrocoagulation experiments were carried out to evaluate the removal of polycyclic aromatic hydrocarbon (PAHs) from water using aluminum electrodes. The effects of initial pH, current density, electrolysis time, initial concentration of PAHs, electrolyte type, and electrolyte concentration were investigated to achieve the optimal removal efficiency. The results indicated that the electrocoagulation utilizing the aluminum, as anode and cathode, was an efficient tool in the reduction of these contaminants. The treatment process was found to be largely affected by the current density and the initial composition of water. The removal rate was significantly increased using NaCl as an electrolyte where indirect oxidation by hypochlorite forming later during the treatment was occurred. The results demonstrated that the technical feasibility of the electrocoagulation as a possible and reliable technique for the treatment of PAHs contaminants in water.

References used

Muff, J., Søgaard, E.G. (2010). Electrochemical degradation of PAH compounds in process water: a kinetic study on model solutions and a proof of concept study on runoff water from harbour sediment purification. Water Science & Technology, Vol. 61, No. 8, 2043–2051
Gao, Y., Ling, W., Wong, H. M. (2006). Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere, Vol. 63, No. 9, 1560–1567
Alcántara, M. T., Gómez, J., Sanromán, M. A. (2008). Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant– electrochemical degradation, Chemosphere. Vol. 70, No. 8, 1438–1444

Download