Designing Optimal Path for 6D of Robot Arm Motion


Abstract in English

Industrialists interested automates their factories to increase production, reduce costs and improve quality by using robots in leadership and finishing most of the production processes, where robots characterized as mechanical structures programmable to perform tasks accurate, speed and reliability. Research depend in concluding the optimal path on generating virtual paths (triangular, curved, square) reflects the robotic arm movement to reach the target point, where as it has been known moving time and angles of rotation and torque in the joints under the influence of gravity through the study of horizontal and vertical movement of the robotic arm. A study of suggested trajectories for the robotic arm shows that the best paths on the safety of robotic arm motors is semi-circular path as limiting the occurrence of mechanical shocks or the appearance of high values of the joints torques. while showing that the path that achieves less time to reach the target point and less amount of energy is the triangular path in the case of horizontal motion of the robotic arm despite the emergence of sharp deviations in the torque and power schemas as a result of the sudden change in the direction of movement. The negative impact of gravity is especially apparent when the second joint up or down movement, causing the appearance of peaks in energy curve reflects the high values of determination in this joint.

References used

A. GASPARETTO, P. BOSCARIOL, A. LANZUTTI, R. VIDONI. Trajectory Planning in Robotics, Mathematics in Computer Science, Volume 6, Issue 3, Pages 269-279, 2012
P.J. BARRE, R. BEAREE, P. BORNE, E. DUMETZ. Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems, Journal of Intelligent and Robotic Systems, Volume 42, Issue 3, Pages 275-93, 2005
R. VIDONI, N. LEVER, D. RICHIEDEI, A. GASPARELLA, A. TREVISANI, A. GASPARETTO. Energy Efficiency and smoothness in robotics trajectory planning: numerical simulation and comparison, Proc. of the Austrian Robotics Workshop (ARW 2013), Wien (Austria), May 23-24, 2013

Download