Validation of Real Seismic Records Sets for Nonlinear Dynamic Analysis of Structures Located in Lattakia City - Syria


Abstract in English

Structural design for seismic loading, which is traditionally done for most types of common structures by the means of equivalent lateral static loading or modal spectrum analysis, is no longer a preferred methodology for design of modern structures with complex topology and functionality under extreme loading scenarios. Nonlinear response history evaluation, on the other hand, is becoming a practical tool due to availability of high performance computing and recommendations of the new seismic guidelines, and due to the increase of available strong ground motion database. Therefor using and scaling real recorded accelerograms is becoming one of the most contemporary research issues in this field. Seismological characteristics of the records, such as earthquake magnitude, epicentral distance and site classification are usually considered in the selection of real records, as they influence the shape of the response spectrum, the energy content and duration of strong ground shaking, and therefore the expected demand on structures. After real seismic records selection it is necessary to scale these records to match the intensity of the earthquake expected for the site. Generally, scaling can be made by ground motions uniform scaling in time domain which is simply scaled up or down the ground motions uniformly to best match (in average) the target spectrum within a period range of interest. It’s an engineer’s job to find the best scaling factors to best match the target spectrum, which is a complex task, so we employed the Genetic Algorithm (GA) in finding them to achieve the best results. When testing the selected and scaled ground motions, it’s a standard procedure to use the nonlinear time history analysis to validate the results in terms of structural responses and their variation. this proves the efficiency of the presented procedure. In this study, basic methodologies for selecting and scaling strong ground motion time histories are summarized, the selection and scaling criteria of real time history records to satisfy the Syrian design code are discussed. The GA scaling procedures are utilized to scale 10 set of records, every set consists of seven records of available real records to match the Syrian design spectra. The resulting time histories are investigated and compared in terms of suitability as input to time history analysis of civil engineering structures, by mean of time history analyses of SDOF systems which are conducted to examine the efficiency of the scaling method in reducing the scatter in structural response. The nonlinear response of SDOF systems is represented by bilinear hysteretic model. Assuming 5 different Periods, yield strength reduction factor, R= 4.5, α=3% post-yield stiffness, a number of 700 runs of analysis are conducted. The results are described for elastic displacement D.

References used

[12]. HWAIJA, B. JDYD, S. “Selecting Real Seismic Records and Scaling it to Fit the Syrian Design Spectra using Genetic Algorithm” Journal of Al Baath University, Syria, Vol. 37, 2015.

Download