The Energy Space of Hermite Operator in R^n and Associated Sobolev Spaces


Abstract in English

In this paper we study the energy space of the Hermite differential operator and prove that it is a Hilbert space with a suitable inner product. Then we construct the powers of , denoted by , by using the spectral theory . We will see that has similar properties as for real numbers s > o, therefore we can construct new Hilbert spaces which are the energy spaces of powers of . They are Sobolev spaces.

References used

NANKDAKUMARAN, A.K. ; RATNAKUMAR,P.K.Schrödinger equation and the oscillatory semigroup for the Hermite operator.2009
SJOGREN, P. ; TORREA,J.L. On the boundary convergence of solutions to the Hermite – Schrödinger equation. Duke Math , J.55, 1987, 699 -715
BONJIOANNI, B.;ROGERS, K.M . Regularity of the Schrödinger equation for the Harmonic oscillator.2008

Download