studying the effect of cooling process on Photovoltaic cell and increasing the efficiency of Hydrogen solar models


Abstract in English

Solar Energy and Hydrogen are possible replacement options for fossil fuel, But a major drawback to the full implementation of solar energy, in particular photovoltaic (PV), is the lowering of conversion efficiency of PV cells due to elevated cell temperatures while in operation. Also, hydrogen must be produced in gaseous or liquid form before it can be used as fuel; but its‟ present major conversion process produces an abundance of carbon dioxide which is harming the environment through global warming. In search of resolutions to these issues, this research investigated the application of Thermal Management to Photovoltaic (PV) modules in an attempt to reverse the effects of elevated cell temperature. The investigation also examined the effects of the thermally managed PV module to a Electrolyzer (Hydrogen Generator) for the production of hydrogen gas in an environmentally friendly way. The results of the investigation showed that the cooling system stopped the cell temperature from rising, reversed the negative effects on conversion efficiency, and increased the power output of the module by as much as 33%. The results also showed that the thermally managed PV module when coupled to the hydrogen generator impacted positively with an appreciablely increase of up to 26% in hydrogen gas production.

References used

ASHRAE. (America Society of Heating, Refrigeration and Air Conditioning Engineers). ASHRAE Handbook OHV AC Applications,I995-1996
BRINKWORTH,B.J. ; CROSS,B.M. ; MARSHALL,R.H. "Thermal Regulation of Photovoltaic Cladding," Sol. Energy. 61st ,1997, pp. 169-178
Brogren M., Karlsson B. Low-Concentrating Water-Cooled PV-Thermal Hybrid Systems for High Latitudes. In: Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, pp.1733-36, 2002

Download