Design of a semi-active suspension system using self-organizing fuzzy controller


Abstract in English

One ofa car's suspension system functions is to isolate vibrations resulting from road on the driver and ensure a comfortable ride. But the design of control systems for semi-active suspension systems is difficult because of the non-linearity of the constituent elements of these systems which make the researches related to it characterized by complexity. So in order to improve the performance of semi-active suspension systems without bearing the effort of designing a model based controller, a control system is designed using self-organizing fuzzy controller based on the principle of delay-in-penalty to control a semi-active suspension system which uses a magneto rheological damper. The controller tries to enhance system performance using the desired response as it is described in the penalty table. The fuzzy logic controller is based on two inputs namely sprung mass velocity and unsprung mass velocity. Using a quarter car model with 2 degree-of-freedom the system is modeled and simulated in MATLAB &Simulink® and the results are compared to the widely used sky-hook strategy. the simulation showed the ability of the self-organizing fuzzy controller to provide good results in minimizing sprung mass acceleration in variousroad profiles compared to sky-hookstrategy.

References used

Jazar, Reza N.Vehicle Dynamics: Tehory and Applications. New York : Springer, 2008. p. 1015. ISBN:978-0-387-74243-4
Rill, George.Vehicle Dynamics. University of Applied Sciences. Fachhochschule Regensburg, 2006. p. 157, Lecture notes
Dixon, John C.The Shock Absorber Handbook. Chichester : Wiley, 2007. p. 445. ISBN: 9780470510209

Download