Study about Arabic Text Documents Classification using Ontologies


Abstract in English

In this paper, we introduce an algorithm for grouping Arabic documents for building an ontology and its words. We execute the algorithm on five ontologies using Java. We manage the documents by getting 338667 words with its weights corresponding to each ontology. The algorithm had proved its efficiency in optimizing classifiers (SVM, NB) performance, which we tested in this study, comparing with former classifiers results for Arabic language.

References used

AL-Ghuribi,S Alshomrani,S. 2014. Bi-languages mining algorithm for classifying text documents (BiLTc), International Jornal of Academic Research Part A Vol. 6 No. 5, 16-25
Gruber,T. 1993. A translation approach to providing portable ontology specifications, Knowledge Acquisition, Vol.5 No 2, 199-220
Hastie,T Tibshirani,R Friedman.J. 2013-The elements of Statistical Learning - Data Mining, Inference, and Prediction. Springer-Verlag, second Ed, Berlin,764p

Download