Generalized Moreau – Yosida Approximation


Abstract in English

The purpose of the research is to study the Bergman function and Bergman distance to generalize Moreau – Yosida Approximation. To do that we replace the quadratic additive terms in Moreau – Yosida Approximates by more general Bergman distance and study properties of generalized approximation and prove equivalence between epigraph – convergence and pointwise convergence of the generalized Moreau – Yosida Approximation.

References used

Attouch, H. Variational Convergence For Functions And Operators .Pitman, London, 1984 , 120-264
Attouch, H.; Aze, D.; Wets,R.On Continuity Properties Of The Partial Legendre- Fenchel Transform : Convergence Of Sequences Augmented Lagrangian Functions , Moreau-Yoshida Approximates And Subdiffferential Operators. Fermat Days 85: Mathematics For Optimization, 1986
Bauschke, H. H.; Combettes, P. L. Iterating Bregman Retractions, Siam Journal On Control And Optimization, Vol. 42, 596–636, 2003
Bauschke, H. H.; Borwein, J. M.; Combettes, P. L. Bregman Monotone Optimization Algorithms. Siam Journal On Control And Optimization, Vol. 42, 596–636, 2003
Bauschke, H. H.; Borwein, J. M. , Legendre Functions And The Method Of Random Bregman Projection, J. Convex Anal. 4 (1997), 27–67

Download