Continuity and continuing full 0f the integrations linear operators the N-function, in the W.Orlicz space


Abstract in English

The aim of this paper is to discuss the necessary and sufficient conditions for the continuity of operator linear integral in Orlicz space on a compact set of functions realized with the terms of a lebegue measure of the Euclidean space ending dimension and the use of the terms continuous measurement N-function definition continued N-function some theorems in Hilbert, Banach spaces. Then the research touched on the concept of the continued complementary N-function given, in order to discuss the terms of a continuing full for Integrative operator linear kernel which is studied, and to achieve qualities compact a functions set in W. Orlicz space and choose the best approximation for linear integrative operators. Finally a comparison is carried out between continuing full and weak convergence of the functional sequences in subspace of W. Orlicz space.

References used

(K Kuratowski, A Half Century Of Polish Mathematics (Warsaw, 1980
(H Steinhaus, Between Spirit And Matter Mediate Mathematics (Polish) (Warsaw- Wroclaw, 2000
(Wladyslaw Orlicz Collected Papers I, Ii (Warsaw, 1988

Download