Studying the Impact of Photovoltaic Modules of Cooling by Water on its Efficiency and Generated Electrical Energy


Abstract in English

The electrical performance of the PV modules can be severely affected by operating temperature of silicon cells due to properties of the crystalline silicon used; the energy generated from these cells decreases with their high temperatures. To reduce this decline in energy, the PV modules use cooling water by placing a tube containing many regular holes on the top end of the module, and water flows on the surface freely in several flows. So, with flow rate (4.224 l/min.m2), module temperature decreases up to (20C°); the record of increased value of electrical yield over the whole day is about (12.8%). and efficiency rises (from 8.31% to 9.62%) of (1.31%). With Flow rate (3.167 l/min.m2), temperature of module decreases up to (18C°); the record of increased value of electrical yield is about (9.8%), and efficiency rises by (1.03%). But with flow rate (2.112 l/min.m2), temperature of module decreases up to (15.5C°); the record of increased value of electrical yield is about (7.8%), and efficiency rises by (0.83%). Furthermore, flow of water on the surface of PV module reduces the reflection losses because the refractive index of water with (1.3) is intermediate between air (1) and glass (1.5). In addition, the surface of module remains clean.

References used

BORN,M. ; WOLF, E. Principles of Optics. 5th Edition, Pergamon, Oxford, 1975
KRAUTER,S. ; HANITSCH,R. ; CAMPBELL,P. ; WENHAM,S.R. Optical modelling, simulation and improvement of PV module encapsulation. Proceedings of the 12th European Photovoltaic Solar Energy Conference and Exhibition, Vol. 2, Amsterdam, April 11–15, 1994, pp. 1198–1201
KRAUTER,S. ; HANITSCH,R. The influence of the capsulation on the efficiency of PV-modules. Proceedings of the 1st Word Renewable Energy Congress, Reading, UK, September 23–28, 1990,Vol. 1, pp. 141–144
KRAUTER,S. ; HANITSCH,R. ; STRAUSS,Ph. Simulation-program for selecting efficiency improving strategies of PV-module encapsulations under operating conditions. Proceedings of Renewable Energy Sources’91’’, International Conference, Prague, CFSR, July 1–4, 1990, Vol. 3, pp. 48–53
KRAUTER,S. Betriebsmodell der optischen, thermischen and elektrischen Parameter von PV-Modulen, Koster Press, Berlin, 1993

Download