Using Evolutionary Programming Algorithm for Designing a Robust Neural Model for a Class of Control Systems


Abstract in English

This study aims to design a neural model for a linear or nonlinear systems by using an Evolutionary Programming algorithm (EP) to choose the optimal structural construction for the network. We have used Matlab to design Neural Networks using (EP), because of its flexibility and ability to represent matrices (Cell Arrays, Multi Dimension Arrays). The experimental results confirm the efficiency with which this algorithm (EP) obtains the optimal network. We have tested the algorithm performance and the resulting model robustness by canceling one of the hidden layer nodes of the best net resulting from applying (EP). The effectiveness of that canceling on the resulting model output is also tested, and this study has shown the efficiency of the algorithm (EP) for the class of systems used.

References used

CANGELOSI, A;ELMAN, J.L. Gene regulation and biological development in neural networks :an exploratory model. Technical Report, CRL-UCSD, University of California San Diego, 1995
HAYKIN, S. Neural Networks :A Comprehensive Foundation. 2nd, Ed, London, prentice-Hall, 1999
FUJITA, O. statistical estimation of the number of hidden units for feed forward neural networks. neural networks11(5), 1988, 851-859
MONTANA, D; DAVIS, L. Training feed forward neural networks using genetic algorithms. In: Proceedings of the 11th International Joint Conference on AI, Detroit, MI, 1989,762–767
KITANO, H. Designing neural networks using genetic algorithms with graph generation system.Complex Systems4(4), 1990, 461–476

Download