Modeling of Absorptive Cooling Cycle System for Conditioning Purposes by Using EES Program


Abstract in English

In this research an absorptive cooling cycle system modeling which can be used for conditioning purposes by using EES program was done. By using this program, the effect of temperature of the vapor generator, the evaporator and the condenser on the performance of the vapor cycle and the circulating coefficient was studied as well as the effect of the evaporating range width in the generator and the definition the values and ideal ranges for each part. The result showed that whenever the condenser temperature increases the performance coefficient ( COP ) decreases, and by increasing the condensation temperature from 18 – 36 C , thus the values of the circulating coefficient increases, while the average temperature released from the condenser to the external environment decreases at the same range of the previous temperature, and that the increase of the evaporator temperature would increase the performance coefficient ( COP ). An absorptive cooling circuit system modeling using water and lithium bromide was achieved. Results showed that the increase of the evaporator temperature of between 4 -13 C, the average of heat amount drawn from the desired place to be cooled would increase.

References used

Alizadeh, S. "Multi-pressure absorption cycles in solar refrigeration: a technical and economical study" Solar Energy 69, (2000) 37 – 44
Chen, G.; Hihara, E. „A new absorption refrigeration cycle using solar energy“ Solar Energy 66, (1999) 479 – 482
Sözen, A. "Effect of heat exchanger on performance of absorption refrigeration systems" Energy Conversion and Management 42, (2001) 1699-1716
(EES:Engineering Equation Solver" F-Chart Software, www.fchart.com/ees/ees.shtml. or www.southalabama.edu/engineering/solver.shtml, (2012

Download