A Study in the Linear Programing and IT'S application in the Diet Problem


Abstract in English

Linear programming (LP, or linear optimization) is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polyhedron, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine function defined on this polyhedron. A linear programming algorithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a point exists.

References used

Alexander Schrijver (2003). Combinatorial optimization: polyhedra and efficiency. Springer
G.B.Dantzig. Linear programing and Extensions
H. P. Williams, Model Building in Mathematical Programming, Third revised Edition, 1990. (ModelingPrinceton University Press; Princeton, New Jersey, 1963
L.V. Kantorovich: A new method of solving some classes of extremal problems, Doklady Akad Sci USSR, 28, 1999, 211-214

Download