Spline Method with Five Collocation Points for Solving Systems of High-Index Linear Differential Algebraic Equations


Abstract in English

In this paper, we introduce a numerical method for solving systems of high-index differential algebraic equations. This method is based on approximating the exact solution by spline polynomial of degree eight with five collocation points to find the numerical solution in each step. The study shows that the method when applied to linear differential-algebraic systems with index equal one is stable and convergent of order 8, while it is stable and convergent of order 9-u for index equal u . Numerical experiments for four test examples and comparisons with other available results are given to illustrate the applicability and efficiency of the presented method

References used

PETZOLD L. R. (1986), Order results for implicit Runge-Kutta methods applied to differential/algebraic systems, SIAM J. Numer. Anal., 23, 837-852
ROCHE M. (1989), Implicit Runge-Kutta methods for differential algebraic equations, SIAM J. Numer. Anal., 26, 963-975
ASCHER U. M. and L. R. PETZOLD (1991), Projected implicit Runge-Kutta methods for differential-algebraic equations, SIAM J. Numer. Anal., 28, 1097-1120
ASCHER U. M. and P. LIN (1997), Sequential regularization methods for nonlinear higher-index DAEs, SIAM J. Sci. Comput., 18, 1, 160-181
CAO Y., LI SH., PETZOLD L. (2002), Adjoint Sensitivity Analysis For Differential-Algebraic Equations: Algorithms and Software , Journal of Computational and Applied Mathematics 149 171–191

Download