Prolonging of ZigBee protocol Based wireless sensor network Life Time


Abstract in English

The reducing of energy consumption for various nodes in wireless sensor networks plays an important and essential role in the prolonging of the life of these networks. In order not to be the energy consumption in some node is very high and in others is less or very low, the choice of distribution algorithms of the nodes role, as a router node or terminal nodes, and switching between them, plays an important role in prolonging the lifetime of wireless sensor networks. This paper presents an algorithm for the distribution of WSN nodes roles, including allowing the applying of many tree patterns to a single network. This offers the potential to alter the network nodes roles centrally by coordinator and switching between these tree patterns whenever the need arises according to the indicators of energy consumption in the nodes. The results show that the use of the algorithm leads to a significant improvement in the network life ranges between 2 and 4 times, according to the allowing the nodes to sleep and wakeup, or not, for different transmission rates where the scenarios have been tested for ZigBee based wireless sensors networks using NS-2 simulator.

References used

Jennifer Yick, Biswanath Mukherjee, DipakGhosal, “Wireless sensor network survey,” Computer Networks, Elsevier Publications, vol. 52, pp. 2229–2330, 2008
Z. Xu, Yue Yin, Jin Wang and Jeong-UkKim“An Energy-Efficient Clustering Algorithm in WSN with Multiple Sinks”, International Journal of Distributed Sensor Network, 2012
K. Padmanabhan, Dr. P. Kamalakkannan “Energy Efficient Adaptive Protocol for Clustered Wireless Sensor Networks” IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2013
Tony Ducrocq, Michaël Hauspie, and Nathalie Mitton; Balancing Energy Consumption in Clustered; Wireless Sensor Networks; ISRN Sensor Networks; September 2013
Gun M., Kosar R., Ersoy C. Lifetime optimization using variable battery capacities and nonuniform density deployment in wireless sensor networks // Computer and information sciences, 2007. iscis 2007. 22nd international symposium on. 2007. P. 1–6

Download