Why Do Document-Level Polarity Classifiers Fail?


Abstract in English

Machine learning solutions are often criticized for the lack of explanation of their successes and failures. Understanding which instances are misclassified and why is essential to improve the learning process. This work helps to fill this gap by proposing a methodology to characterize, quantify and measure the impact of hard instances in the task of polarity classification of movie reviews. We characterize such instances into two categories: neutrality, where the text does not convey a clear polarity, and discrepancy, where the polarity of the text is the opposite of its true rating. We quantify the number of hard instances in polarity classification of movie reviews and provide empirical evidence about the need to pay attention to such problematic instances, as they are much harder to classify, for both machine and human classifiers. To the best of our knowledge, this is the first systematic analysis of the impact of hard instances in polarity detection from well-formed textual reviews.

References used

https://aclanthology.org/

Download