In this paper, we investigate the Domain Generalization (DG) problem for supervised Paraphrase Identification (PI). We observe that the performance of existing PI models deteriorates dramatically when tested in an out-of-distribution (OOD) domain. We conjecture that it is caused by shortcut learning, i.e., these models tend to utilize the cue words that are unique for a particular dataset or domain. To alleviate this issue and enhance the DG ability, we propose a PI framework based on Optimal Transport (OT). Our method forces the network to learn the necessary features for all the words in the input, which alleviates the shortcut learning problem. Experimental results show that our method improves the DG ability for the PI models.