An understanding of humor is an essential component of human-facing NLP systems. In this paper, we investigate several methods for detecting humor in short statements as part of Semeval-2021 Shared Task 7. For Task 1a, we apply an ensemble of fine-tuned pre-trained language models; for Tasks 1b, 1c, and 2a, we investigate various tree-based and linear machine learning models. Our final system achieves an F1-score of 0.9571 (ranked 24 / 58) on Task 1a, an RMSE of 0.5580 (ranked 18 / 50) on Task 1b, an F1-score of 0.5024 (ranked 26 / 36) on Task 1c, and an RMSE of 0.7229 (ranked 45 / 48) on Task 2a.