This paper presents the Adam Mickiewicz University's (AMU) submissions to the WMT 2021 News Translation Task. The submissions focus on the English↔Hausa translation directions, which is a low-resource translation scenario between distant languages. Our approach involves thorough data cleaning, transfer learning using a high-resource language pair, iterative training, and utilization of monolingual data via back-translation. We experiment with NMT and PB-SMT approaches alike, using the base Transformer architecture for all of the NMT models while utilizing PB-SMT systems as comparable baseline solutions.