Do you want to publish a course? Click here

Linearizability of the Perturbed Burgers Equation

271   0   0.0 ( 0 )
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show in this letter that the perturbed Burgers equation $u_t = 2uu_x + u_{xx} + epsilon ( 3 alpha_1 u^2 u_x + 3alpha_2 uu_{xx} + 3alpha_3 u_x^2 + alpha_4 u_{xxx} )$ is equivalent, through a near-identity transformation and up to order epsilon, to a linearizable equation if the condition $3alpha_1 - 3alpha_3 - 3/2 alpha_2 + 3/2 alpha_4 = 0$ is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.



rate research

Read More

We consider the Cauchy problem for the Burgers hierarchy with general time dependent coefficients. The closed form for the Greens function of the corresponding linear equation of arbitrary order $N$ is shown to be a sum of generalised hypergeometric functions. For suitably damped initial conditions we plot the time dependence of the Cauchy problem over a range of $N$ values. For $N=1$, we introduce a spatial forcing term. Using connections between the associated second order linear Schr{o}dinger and Fokker-Planck equations, we give closed form expressions for the corresponding Greens functions of the sinked Bessel process with constant drift. We then apply the Greens function to give time dependent profiles for the corresponding forced Burgers Cauchy problem.
We address the question whether one can identify instantons in direct numerical simulations of the stochastically driven Burgers equation. For this purpose, we first solve the instanton equations using the Chernykh-Stepanov method [Phys. Rev. E 64, 026306 (2001)]. These results are then compared to direct numerical simulations by introducing a filtering technique to extract prescribed rare events from massive data sets of realizations. Using this approach we can extract the entire time history of the instanton evolution which allows us to identify the different phases predicted by the direct method of Chernykh and Stepanov with remarkable agreement.
277 - Kin Ming Hui , Sunghoon Kim 2015
We prove the convergence of the solutions $u_{m,p}$ of the equation $u_t+(u^m)_x=-u^p$ in $Rtimes (0,infty)$, $u(x,0)=u_0(x)ge 0$ in $R$, as $mtoinfty$ for any $p>1$ and $u_0in L^1(R)cap L^{infty}(R)$ or as $ptoinfty$ for any $m>1$ and $u_0in L^{infty}(R)$ . We also show that in general $underset{ptoinfty}limunderset{mtoinfty}lim u_{m,p} eunderset{mtoinfty}limunderset{ptoinfty}lim u_{m,p}$.
We have shown in a recent collaboration that the Cauchy problem for the multi-dimensional Burgers equation is well-posed when the initial data u(0) is taken in the Lebesgue space L 1 (R n), and more generally in L p (R n). We investigate here the situation where u(0) is a bounded measure instead, focusing on the case n = 2. This is motivated by the description of the asymptotic behaviour of solutions with integrable data, as t $rightarrow$ +$infty$. MSC2010: 35F55, 35L65. Notations. We denote $times$ p the norm in Lebesgue L p (R n). The space of bounded measure over R m is M (R m) and its norm is denoted $times$ M. The Dirac mass at X $in$ R n is $delta$ X or $delta$ x=X. If $ u$ $in$ M (R m) and $mu$ $in$ M (R q), then $ u$ $otimes$ $mu$ is the measure over R m+q uniquely defined by $ u$ $otimes$ $mu$, $psi$ = $ u$, f $mu$, g whenever $psi$(x, y) $ otequiv$ f (x)g(y). The closed halves of the real line are denoted R + and R --. * U.M.P.A., UMR CNRS-ENSL # 5669. 46 all{e}e dItalie,
The semantics of concurrent data structures is usually given by a sequential specification and a consistency condition. Linearizability is the most popular consistency condition due to its simplicity and general applicability. Nevertheless, for applications that do not require all guarantees offered by linearizability, recent research has focused on improving performance and scalability of concurrent data structures by relaxing their semantics. In this paper, we present local linearizability, a relaxed consistency condition that is applicable to container-type concurrent data structures like pools, queues, and stacks. While linearizability requires that the effect of each operation is observed by all threads at the same time, local linearizability only requires that for each thread T, the effects of its local insertion operations and the effects of those removal operations that remove values inserted by T are observed by all threads at the same time. We investigate theoretical and practical properties of local linearizability and its relationship to many existing consistency conditions. We present a generic implementation method for locally linearizable data structures that uses existing linearizable data structures as building blocks. Our implementations show performance and scalability improvements over the original building blocks and outperform the fastest existing container-type implementations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا