The explicit semiclassical treatment of logarithmic perturbation theory for the bound-state problem within the framework of the Dirac equation is developed. Avoiding disadvantages of the standard approach in the description of exited states, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues for the Yukawa potential containing the vector part as well as the scalar component are considered.