No Arabic abstract
Proposals for nonlinear extenstions of quantum mechanics are discussed. Two different concepts of mixed state for any nonlinear version of quantum theory are introduced: (i) >genuine mixture< corresponds to operational mixing of different ensembles, and (ii) a mixture described by single density matrix without having a canonical operational possibility to pick out its specific convex decomposition is called here an >elementary mixture<. Time evolution of a class of nonlinear extensions of quantum mechanics is introduced. Evolution of an elementary mixture cannot be generally given by evolutions of components of its arbitrary convex decompositions. The theory is formulated in a geometric form: It can be considered as a version of Hamiltonian mechanics on infinite dimensional space of density matrices. A quantum interpretation of the theory is sketched.
The foundations of quantum mechanics have been plagued by controversy throughout the 85 year history of the field. It is argued that lack of clarity in the formulation of basic philosophical questions leads to unnecessary obscurity and controversy and an attempt is made to identify the main forks in the road that separate the most important interpretations of quantum theory. The consistent histories formulation, also known as consistent quantum theory, is described as one particular way (favored by the author) to answer the essential questions of interpretation. The theory is shown to be a realistic formulation of quantum mechanics, in contrast to the orthodox or Copenhagen formulation which will be referred to as an operationalist theory.
A series of geometric concepts are formulated for $mathcal{PT}$-symmetric quantum mechanics and they are further unified into one entity, i.e., an extended quantum geometric tensor (QGT). The imaginary part of the extended QGT gives a Berry curvature whereas the real part induces a metric tensor on systems parameter manifold. This results in a unified conceptual framework to understand and explore physical properties of $mathcal{PT}$-symmetric systems from a geometric perspective. To illustrate the usefulness of the extended QGT, we show how its real part, i.e., the metric tensor, can be exploited as a tool to detect quantum phase transitions as well as spontaneous $mathcal{PT}$-symmetry breaking in $mathcal{PT}$-symmetric systems.
An hidden variable (hv) theory is a theory that allows globally dispersion free ensembles. We demonstrate that the Phase Space formulation of Quantum Mechanics (QM) is an hv theory with the position q, and momentum p as the hv. Comparing the Phase space and Hilbert space formulations of QM we identify the assumption that led von Neumann to the Hilbert space formulation of QM which, in turn, precludes global dispersion free ensembles within the theory. The assumption, dubbed I, is: If a physical quantity $mathbf{A}$ has an operator $hat{A}$ then $f(mathbf{A})$ has the operator $f(hat{A})$. This assumption does not hold within the Phase Space formulation of QM. The hv interpretation of the Phase space formulation provides novel insight into the interrelation between dispersion and non commutativity of position and momentum (operators) within the Hilbert space formulation of QM and mitigates the criticism against von Neumanns no hidden variable theorem by, virtually, the consensus.
Possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes the cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at super-luminal speed, but at the same time it is impossible to clone quantum pure states.
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called lq microscopic theory (MIQM), applicable to any closed system $S$ of arbitrary size $N$, using concepts referring to $S$ alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleasons theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.