No Arabic abstract
Coherence in an open quantum system is degraded through its interaction with a bath. This decoherence can be avoided by restricting the dynamics of the system to special decoherence-free subspaces. These subspaces are usually constructed under the assumption of spatially symmetric system-bath coupling. Here we show that decoherence-free subspaces may appear without spatial symmetry. Instead, we consider a model of system-bath interactions in which to first order only multiple-qubit coupling to the bath is present, with single-qubit system-bath coupling absent. We derive necessary and sufficient conditions for the appearance of decoherence-free states in this model, and give a number of examples. In a sequel paper we show how to perform universal and fault tolerant quantum computation on the decoherence-free subspaces considered in this paper.
Non-adiabatic holonomic quantum gate in decoherence-free subspaces is of greatly practical importance due to its built-in fault tolerance, coherence stabilization virtues, and short run-time. Here we propose some compact schemes to implement two- and three-qubit controlled unitary quantum gates and Fredkin gate. For the controlled unitary quantum gates, the unitary operator acting on the target qubit is an arbitrary single-qubit gate operation. The controlled quantum gates can be directly implemented using non-adiabatic holonomy in decoherence-free subspaces and the required resource for the decoherence-free subspace encoding is minimal by using only two neighboring physical qubits undergoing collective dephasing to encode a logical qubit.
The adiabatic theorem and shortcuts to adiabaticity for the adiabatic dynamics of time-dependent decoherence-free subspaces are explored in this paper. Starting from the definition of the dynamical stable decoherence-free subspaces, we show that, under a compact adiabatic condition, the quantum state follows time-dependent decoherence-free subspaces (the adiabatic decoherence free subspaces) into the target subspace with extremely high purity, even though the dynamics of the quantum system may be non-adiabatic. The adiabatic condition mentioned in the adiabatic theorem is very similar with the adiabatic condition for closed quantum systems, except that the operators required to be slowness is on the Lindblad operators. We also show that the adiabatic decoherence-free subspaces program depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems has to be engineered according to the incoherent control program. Besides, the shortcuts to adiabaticity for the adiabatic decoherence-free subspaces program is also presented based on the transitionless quantum driving method. Finally, we provide an example of physical systems that support our programs. Our approach employs Markovian master equations and applies primarily to finite-dimensional quantum systems.
We discuss the structure of decoherence-free subsystems for a bosonic channel affected by collective depolarization. A single use of the channel is defined as a transmission of a pair of bosonic modes. Collective depolarization consists in a random linear U(2) transformation of the respective mode operators, which is assumed to be identical for $N$ consecutive uses of the channel. We derive a recursion formula that characterizes the dimensionality of available decoherence-free subsystems in such a setting.
Protecting quantum states from the decohering effects of the environment is of great importance for the development of quantum computation devices and quantum simulators. Here, we introduce a continuous dynamical decoupling protocol that enables us to protect the entangling gate operation between two qubits from the environmental noise. We present a simple model that involves two qubits which interact with each other with a strength that depends on their mutual distance and generates the entanglement among them, as well as in contact with an environment. The nature of the environment, that is, whether it acts as an individual or common bath to the qubits, is also controlled by the effective distance of qubits. Our results indicate that the introduced continuous dynamical decoupling scheme works well in protecting the entangling operation. Furthermore, under certain circumstances, the dynamics of the qubits naturally led them into a decoherence-free subspace which can be used complimentary to the continuous dynamical decoupling.
Quantum information requires protection from the adverse affects of decoherence and noise. This review provides an introduction to the theory of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling. It addresses quantum information preservation as well protected computation.