Do you want to publish a course? Click here

Quantum Wires and Quantum Dots for Neutral Atoms

57   0   0.0 ( 0 )
 Added by Joerg Schmiedmayer
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

By placing changeable nanofabricated structures (wires, dots, etc.) on an atom mirror one can design guiding and trapping potentials for atoms. These potentials are similar to the electrostatic potentials which trap and guide electrons in semiconductor quantum devices like quantum wires and quantum dots. This technique will allow the fabrication of nanoscale atom optical devices.

rate research

Read More

The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optical traps, while preserving the fundamental properties of quantum matter (coherence, entanglement, superposition), makes these technologies prime candidates to implement disruptive computation paradigms. In this paper, we review the main characteristics of these devices from atoms / qubits to application interfaces, and propose a classification of a wide variety of tasks that can already be addressed in a computationally efficient manner in the Noisy Intermediate Scale Quantum era we are in. We illustrate how applications ranging from optimization challenges to simulation of quantum systems can be explored either at the digital level (programming gate-based circuits) or at the analog level (programming Hamiltonian sequences). We give evidence of the intrinsic scalability of neutral atom quantum processors in the 100-1,000 qubits range and introduce prospects for universal fault tolerant quantum computing and applications beyond quantum computing.
223 - P. S. Jessen , I. H. Deutsch , 2004
Quantum information can be processed using large ensembles of ultracold and trapped neutral atoms, building naturally on the techniques developed for high-precision spectroscopy and metrology. This article reviews some of the most important protocols for universal quantum logic with trapped neutrals, as well as the history and state-of-the-art of experimental work to implement these in the laboratory. Some general observations are made concerning the different strategies for qubit encoding, transport and interaction, including tradeoffs between decoherence rates and the likelihood of twoqubit gate errors. These tradeoffs must be addressed through further refinements of logic protocols and trapping technologies before one can undertake the design of a generalpurpose neutral-atom quantum processor.
The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation is derived within a framework that accounts for multiple excitations in the ensembles as well as loss and asymmetries in the channel. The DLCZ performance metrics that are obtained are compared to the corresponding results for the trapped-atom quantum communication architecture that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT/NU). Both systems are found to be capable of high-fidelity entanglement distribution. However, the DLCZ scheme only provides conditional teleportation and repeater operation, whereas the MIT/NU architecture affords full Bell-state measurements on its trapped atoms. Moreover, it is shown that achieving unity conditional fidelity in DLCZ teleportation and repeater operation requires ideal photon-number resolving detectors. The maximum conditional fidelities for DLCZ teleportation and repeater operation that can be realized with non-resolving detectors are 1/2 and 2/3, respectively.
We study the nature of excitons bound to I1 basal plane stacking faults in ensembles of ultrathin GaN nanowires by continuous-wave and time-resolved photoluminescence spectroscopy. These ultrathin nanowires, obtained by the thermal decomposition of spontaneously formed GaN nanowire ensembles, are tapered and have tip diameters down to 6 nm. With decreasing nanowire diameter, we observe a strong blue shift of the transition originating from the radiative decay of stacking fault-bound excitons. Moreover, the radiative lifetime of this transition in the ultrathin nanowires is independent of temperature up to 60 K and significantly longer than that of the corresponding transition in as-grown nanowires. These findings reveal a zero-dimensional character of the confined exciton state and thus demonstrate that I1 stacking faults in ultrathin nanowires act as genuine quantum dots.
Entangled K0 anti-K0 pairs are shown to be suitable to discuss extensions and tests of Bohrs complementarity principle through the quantum marking and quantum erasure techniques suggested by M. O. Scully and K. Druehl [Phys. Rev. A 25, 2208 (1982)]. Strangeness oscillations play the role of the traditional interference pattern linked to wave-like behaviour, whereas the distinct propagation in free space of the K_S and K_L components mimics the two possible interferometric paths taken by particle-like objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا