Do you want to publish a course? Click here

How fast can a quantum computer search?

62   0   0.0 ( 0 )
 Added by Lov K. Grover
 Publication date 1998
  fields Physics
and research's language is English
 Authors Lov K. Grover




Ask ChatGPT about the research

This paper gives a simple proof of why a quantum computer, despite being in all possible states simultaneously, needs at least 0.707 sqrt(N) queries to retrieve a desired item from an unsorted list of items. The proof is refined to show that a quantum computer would need at least 0.785 sqrt(N) queries. The quantum search algorithm needs precisely this many queries.



rate research

Read More

Work extraction from a heat engine in a cycle by a quantum mechanical device (quantum piston) is analyzed. The standard definition of work fails in the quantum domain. The correct extractable work and its efficiency bound are shown to crucially depend on the initial quantum state of the piston. The transient efficiency bound may exceed the standard Carnot bound, although it complies with the second law. Energy gain (e.g. in lasing) is shown to drastically differ from work gain.
We establish a theoretical understanding of the entanglement properties of a physical system that mediates a quantum information splitting protocol. We quantify the different ways in which an arbitrary $n$ qubit state can be split among a set of $k$ participants using a $N$ qubit entangled channel, such that the original information can be completely reconstructed only if all the participants cooperate. Based on this quantification, we show how to design a quantum protocol with minimal resources and define the splitting efficiency of a quantum channel which provides a way of characterizing entangled states based on their usefulness for such quantum networking protocols.
Quantum theory allows for randomness generation in a device-independent setting, where no detailed description of the experimental device is required. Here we derive a general upper bound on the amount of randomness that can be generated in such a setting. Our bound applies to any black-box scenario, thus covering a wide range of scenarios from partially characterised to completely uncharacterised devices. Specifically, we prove that the number of random bits that can be generated is limited by the number of different input states that enter the measurement device. We show explicitly that our bound is tight in the simplest case. More generally, our work indicates that the prospects of generating a large amount of randomness by using high-dimensional (or even continuous variable) systems will be extremely challenging in practice.
The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. It has been demonstrated recently that partial measurements can be carried out in order to extract only a portion of the information encoded in a quantum system, at the cost of inducing a limited amount of disturbance. Here we analyze experimentally the dynamics of sequential partial measurements carried out on a quantum system, focusing on the trade-off between the maximal information extractable and the disturbance. In particular we consider two different regimes of measurement, demonstrating that, by exploiting an adaptive strategy, an optimal trade-off between the two quantities can be found, as observed in a single measurement process. Such experimental result, achieved for two sequential measurements, can be extended to N measurement processes.
The problem of quantum test is formally addressed. The presented method attempts the quantum role of classical test generation and test set reduction methods known from standard binary and analog circuits. QuFault, the authors software package generates test plans for arbitrary quantum circuits using the very efficient simulator QuIDDPro[1]. The quantum fault table is introduced and mathematically formalized, and the test generation method explained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا