Do you want to publish a course? Click here

Is the EPR paradox really a paradox?

89   0   0.0 ( 0 )
 Added by Angelo Tartaglia
 Publication date 1998
  fields Physics
and research's language is English
 Authors A. Tartaglia




Ask ChatGPT about the research

The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them instruction kits telling them what to do when meeting a measurement apparatus any paradox disappears. In this view the quantum state is characterized by the prescribed behaviour rather than by the specific value a parameter assumes as a result of an interaction.



rate research

Read More

54 - William R. Wharton 1998
Backward causation in which future events affect the past is formalized in a way consistent with Special Relativity and shown to restore locality to nonrelativistic quantum mechanics. It can explain the correlations of the EPR paradox without using hidden variables. It also restores time-symmetry to microphysics. Quantum Mechanics has the right properties to allow for backward causation. The new model is probably untestable experimentally but it has profound philosophical implications concerning reality.
What is the momentum spectrum of a particle moving in an infinite deep square well? Einstein, Pauli and Yukawa had adopted different point of view than that in usual text books. The theoretical and experimental implication of this problem is discussed.
We give a conceptually simple proof of nonlocality using only the perfect correlations between results of measurements on distant systems discussed by Einstein, Podolsky and Rosen---correlations that EPR thought proved the incompleteness of quantum mechanics. Our argument relies on an extension of EPR by Schrodinger.
Here we present the most general framework for $n$-particle Hardys paradoxes, which include Hardys original one and Cerecedas extension as special cases. Remarkably, for any $nge 3$ we demonstrate that there always exist generalized paradoxes (with the success probability as high as $1/2^{n-1}$) that are stronger than the previous ones in showing the conflict of quantum mechanics with local realism. An experimental proposal to observe the stronger paradox is also presented for the case of three qubits. Furthermore, from these paradoxes we can construct the most general Hardys inequalities, which enable us to detect Bells nonlocality for more quantum states.
59 - Hatim Salih 2018
We uncover a new quantum paradox, where a simple question about two identical quantum systems reveals unsettlingly paradoxical answers when weak measurements are considered. Our resolution of the paradox, from within the weak measurement framework, amounts to a proof of counterfactuality for our generalised protocol (2014)---the first to do so---for sending an unknown qubit without any particles travelling between the communicating parties, i.e. counterfactually. The paradox and its resolution are reproduced from a consistent-histories viewpoint. We go on to propose a novel, experimentally feasible implementation of this counterfactual disembodied transport that we call counterportation, based on cavity quantum electrodynamics, estimating resources for beating the no-cloning fidelity limit---except that unlike teleportation no previously-shared entanglement nor classical communication are required. Our approach is up to several orders of magnitude more efficient in terms of physical resources than previously proposed techniques and is remarkably tolerant to device imperfections. Surprisingly, while counterfactual communication is intuitively explained in terms of interaction-free measurement and the Zeno effect, we show based on our proposed scheme that neither is necessary, with implications in support of an underlying physical reality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا