Do you want to publish a course? Click here

Quantum state transfer and entanglement distribution among distant nodes in a quantum network

136   0   0.0 ( 0 )
 Added by Hideo Mabuchi
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a scheme to utilize photons for ideal quantum transmission between atoms located at spatially-separated nodes of a quantum network. The transmission protocol employs special laser pulses which excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wavepacket that will enter a cavity at the receiving node and be absorbed by an atom there with unit probability. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms.



rate research

Read More

The potential impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable real-world imperfections necessitate means to improve remote entanglement by local quantum operations. Here we realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. We demonstrate the heralded generation of two copies of a remote entangled state through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. In addition, this distillation protocol significantly speeds up entanglement generation compared to previous two-photon-mediated schemes. The key combination of generating, storing and processing entangled states demonstrated here opens the door to exploring and utilizing multi-particle entanglement on an extended quantum network.
We demonstrate entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near maximum polarization entanglement. Entanglement is verified by way of the measured violation of a Bell inequality, and can be used for communication protocols such as quantum cryptography. The demonstrated quantum nodes and channels can be used as segments of a quantum repeater, providing an essential tool for robust long-distance quantum communication.
Quantum repeaters, which are indispensable for long-distance quantum communication, are necessary for extending the entanglement from short distance to long distance; however, high-rate entanglement distribution, even between adjacent repeater nodes, has not been realized. In a recent work by C. Jones, et al., New J. Phys. 18, 083015 (2016), the entanglement distribution rate between adjacent repeater nodes was calculated for a plurality of quantum dots, nitrogen-vacancy centers in diamond, and trapped ions adopted as quantum memories inside the repeater nodes. Considering practical use, arranging a plurality of quantum memories becomes so difficult with the state-of-the art technology. It is desirable that high-rate entanglement distribution is realized with as few memory crystals as possible. Here we propose new entanglement distribution scheme with one quantum memory based on the atomic frequency comb which enables temporal multimode operation with one crystal. The adopted absorptive type quantum memory degrades the difficulty of multimode operation compared with previously investigated quantum memories directly generating spin-photon entanglement. It is shown that the present scheme improves the distribution rate by nearly two orders of magnitude compared with the result in C. Jones, et al., New J. Phys. 18, 083015 (2016) and the experimental implementation is close by utilizing state-of-the-art technology.
Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Recent experiments have shown that superconducting qubits can control and detect individual phonons in a resonant structure, enabling the coherent generation and measurement of complex stationary phonon states. Here, we report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2 mm-long acoustic quantum communication channel, equivalent to a 500 ns delay line, we demonstrate the emission and re-capture of a phonon by one qubit; quantum state transfer between two qubits with a 67% efficiency; and, by partial transfer of a phonon between two qubits, generation of an entangled Bell pair with a fidelity of $mathcal{F}_B = 84 pm 1$ %
Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا