Do you want to publish a course? Click here

Quantum Thermalization With Couplings

68   0   0.0 ( 0 )
 Added by H. Dong
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the role of the system-bath coupling for the generalized canonical thermalization [S. Popescu, et al., Nature Physics 2,754(2006) and S. Goldstein et al., Phys. Rev. Lett. 96, 050403(2006)] that reduces almost all the pure states of the universe [formed by a system S plus its surrounding heat bath $B$] to a canonical equilibrium state of S. We present an exactly solvable, but universal model for this kinematic thermalization with an explicit consideration about the energy shell deformation due to the interaction between S and B. By calculating the state numbers of the universe and its subsystems S and B in various deformed energy shells, it is found that, for the overwhelming majority of the universe states (they are entangled at least), the diagonal canonical typicality remains robust with respect to finite interactions between S and B. Particularly, the kinematic decoherence is utilized here to account for the vanishing of the off-diagonal elements of the reduced density matrix of S. It is pointed out that the non-vanishing off-diagonal elements due to the finiteness of bath and the stronger system-bath interaction might offer more novelties of the quantum thermalization.



rate research

Read More

In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Based on these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer with a certified runtime and error bound. This complements quantum Metropolis algorithms, which are expected to be efficient but have no known runtime estimates and only work for local Hamiltonians.
We develop a scheme for engineering genuine thermal states in analog quantum simulation platforms by coupling local degrees of freedom to driven, dissipative ancilla pseudospins. We demonstrate the scheme in a many-body quantum spin lattice simulation setting. A Born-Markov master equation describing the dynamics of the many-body system is developed, and we show that if the ancilla energies are periodically modulated, with a carefully chosen hierarchy of timescales, one can effectively thermalize the many-body system. Through analysis of the time-dependent dynamical generator, we determine the conditions under which the true thermal state is an approximate dynamical fixed point for general system Hamiltonians. Finally, we evaluate the thermalization protocol through numerical simulation and discuss prospects for implementation on current quantum simulation hardware.
When studying thermalization of quantum systems, it is typical to ask whether a system interacting with an environment will evolve towards a local thermal state. Here, we show that a more general and relevant question is when does a system thermalize relative to a particular reference? By relative thermalization we mean that, as well as being in a local thermal state, the system is uncorrelated with the reference. We argue that this is necessary in order to apply standard statistical mechanics to the study of the interaction between a thermalized system and a reference. We then derive a condition for relative thermalization of quantum systems interacting with an arbitrary environment. This condition has two components: the first is state-independent, reflecting the structure of invariant subspaces, like energy shells, and the relative sizes of system and environment; the second depends on the initial correlations between reference, system and environment, measured in terms of conditional entropies. Intuitively, a small system interacting with a large environment is likely to thermalize relative to a reference, but only if, initially, the reference was not highly correlated with the system and environment. Our statement makes this intuition precise, and we show that in many natural settings this thermalization condition is approximately tight. Established results on thermalization, which usually ignore the reference, follow as special cases of our statements.
Thermal states are the bedrock of statistical physics. Nevertheless, when and how they actually arise in closed quantum systems is not fully understood. We consider this question for systems with local Hamiltonians on finite quantum lattices. In a first step, we show that states with exponentially decaying correlations equilibrate after a quantum quench. Then we show that the equilibrium state is locally equivalent to a thermal state, provided that the free energy of the equilibrium state is sufficiently small and the thermal state has exponentially decaying correlations. As an application, we look at a related important question: When are thermal states stable against noise? In other words, if we locally disturb a closed quantum system in a thermal state, will it return to thermal equilibrium? We rigorously show that this occurs when the correlations in the thermal state are exponentially decaying. All our results come with finite-size bounds, which are crucial for the growing field of quantum thermodynamics and other physical applications.
We study the heat statistics of a multi-level $N$-dimensional quantum system monitored by a sequence of projective measurements. The late-time, asymptotic properties of the heat characteristic function are analyzed in the thermodynamic limit of a high, ideally infinite, number $M$ of measurements $(M to infty)$. In this context, the conditions allowing for an Infinite-Temperature Thermalization (ITT), induced by the repeated monitoring of the quantum system, are discussed. We show that ITT is identified by the fixed point of a symmetric random matrix that models the stochastic process originated by the sequence of measurements. Such fixed point is independent on the non-equilibrium evolution of the system and its initial state. Exceptions to ITT, to which we refer to as partial thermalization, take place when the observable of the intermediate measurements is commuting (or quasi-commuting) with the Hamiltonian of the quantum system, or when the time interval between measurements is smaller or comparable with the system energy scale (quantum Zeno regime). Results on the limit of infinite-dimensional Hilbert spaces ($N to infty$), describing continuous systems with a discrete spectrum, are also presented. We show that the order of the limits $Mtoinfty$ and $Ntoinfty$ matters: when $N$ is fixed and $M$ diverges, then ITT occurs. In the opposite case, the system becomes classical, so that the measurements are no longer effective in changing the state of the system. A non trivial result is obtained fixing $M/N^2$ where instead partial ITT occurs. Finally, an example of partial thermalization applicable to rotating two-dimensional gases is presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا