No Arabic abstract
The passage-time distribution for a spread-out quantum particle to traverse a specific region is calculated using a detailed quantum model for the detector involved. That model, developed and investigated in earlier works, is based on the detected particles enhancement of the coupling between a collection of spins (in a metastable state) and their environment. We treat the continuum limit of the model, under the assumption of the Markov property, and calculate the particle state immediately after the first detection. An explicit example with 15 boson modes shows excellent agreement between the discrete model and the continuum limit. Analytical expressions for the passage-time distribution as well as numerical examples are presented. The precision of the measurement scheme is estimated and its optimization discussed. For slow particles, the precision goes like $E^{-3/4}$, which improves previous $E^{-1}$ estimates, obtained with a quantum clock model.
We consider the problem of computing first-passage time distributions for reaction processes modelled by master equations. We show that this generally intractable class of problems is equivalent to a sequential Bayesian inference problem for an auxiliary observation process. The solution can be approximated efficiently by solving a closed set of coupled ordinary differential equations (for the low-order moments of the process) whose size scales with the number of species. We apply it to an epidemic model and a trimerisation process, and show good agreement with stochastic simulations.
Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum world. Recently, within the framework of open quantum systems, there has been proposed such a mechanism in terms of the, so-called, Spectrum Broadcast Structures. These are multipartite quantum states of the system of interest and a part of its environment, assumed to be under an observation. This approach requires a departure from the standard open quantum systems methods, as the environment cannot be completely neglected. In the present work we study the emergence of such a state-structures in one of the canonical models of the condensed matter theory: Spin-boson model, describing the dynamics of a two-level system coupled to an environment made up by a large number of harmonic oscillators. We pay much attention to the behavior of the model in the non-Markovian regime, in order to provide a testbed to analyze how the non-Markovian nature of the evolution affects the surfacing of a spectrum broadcast structure.
We discuss the passage-time statistics of superradiant light pulses generated during the scattering of laser light from an elongated atomic Bose-Einstein condensate. Focusing on the early-stage of the phenomenon, we analyze the corresponding probability distributions and their scaling behaviour with respect to the threshold photon number and the coupling strength. With respect to these parameters, we find quantities which only vary significantly during the transition between the Kapitza Dirac and the Bragg regimes. A possible connection of the present observations to Brownian motion is also discussed.
We apply the recently developed general theory of quantum time distributions arXiv:2010.07575 to find the distribution of arrival times at the detector. Even though the Hamiltonian in the absence of detector is hermitian, the time evolution of the system before detection involves dealing with a non-hermitian operator obtained from the projection of the hermitian Hamiltonian onto the region in front of the detector. Such a formalism eventually gives rise to a simple and physically sensible analytical expression for the arrival time distribution, for arbitrary wave packet moving in one spatial dimension with negligible distortion.
Employing a recently proposed measure for quantum non-Markovianity, we carry out a systematic study of the size of memory effects in the spin-boson model for a large region of temperature and frequency cutoff parameters. The dynamics of the open system is described utilizing a second-order time-convolutionless master equation without the Markov or rotating wave approximations. While the dynamics is found to be strongly non-Markovian for low temperatures and cutoffs, in general, we observe a special regime favoring Markovian behavior. This effect is explained as resulting from a resonance between the systems transition frequency and the frequencies of the dominant environmental modes. We further demonstrate that the corresponding Redfield equation is capable of reproducing the characteristic features of the non-Markovian quantum behavior of the model.