Do you want to publish a course? Click here

Using error correction to determine the noise model

74   0   0.0 ( 0 )
 Added by Martin Laforest
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum error correcting codes have been shown to have the ability of making quantum information resilient against noise. Here we show that we can use quantum error correcting codes as diagnostics to characterise noise. The experiment is based on a three-bit quantum error correcting code carried out on a three-qubit nuclear magnetic resonance (NMR) quantum information processor. Utilizing both engineered and natural noise, the degree of correlations present in the noise affecting a two-qubit subsystem was determined. We measured a correlation factor of c=0.5+/-0.2 using the error correction protocol, and c=0.3+/-0.2 using a standard NMR technique based on coherence pathway selection. Although the error correction method demands precise control, the results demonstrate that the required precision is achievable in the liquid-state NMR setting.



rate research

Read More

The standard quantum error correction protocols use projective measurements to extract the error syndromes from the encoded states. We consider the more general scenario of weak measurements, where only partial information about the error syndrome can be extracted from the encoded state. We construct a feedback protocol that probabilistically corrects the error based on the extracted information. Using numerical simulations of one-qubit error correction codes, we show that our error correction succeeds for a range of the weak measurement strength, where (a) the error rate is below the threshold beyond which multiple errors dominate, and (b) the error rate is less than the rate at which weak measurement extracts information. It is also obvious that error correction with too small a measurement strength should be avoided.
Quantum information can be protected from decoherence and other errors, but only if these errors are sufficiently rare. For quantum computation to become a scalable technology, practical schemes for quantum error correction that can tolerate realistically high error rates will be necessary. In some physical systems, errors may exhibit a characteristic structure that can be carefully exploited to improve the efficacy of error correction. Here, we describe a scheme for topological quantum error correction to protect quantum information from a dephasing-biased error model, where we combine a repetition code with a topological cluster state. We find that the scheme tolerates error rates of up to 1.37%-1.83% per gate, requiring only short-range interactions in a two-dimensional array.
The typical model for measurement noise in quantum error correction is to randomly flip the binary measurement outcome. In experiments, measurements yield much richer information - e.g., continuous current values, discrete photon counts - which is then mapped into binary outcomes by discarding some of this information. In this work, we consider methods to incorporate all of this richer information, typically called soft information, into the decoding of quantum error correction codes, and in particular the surface code. We describe how to modify both the Minimum Weight Perfect Matching and Union-Find decoders to leverage soft information, and demonstrate these soft decoders outperform the standard (hard) decoders that can only access the binary measurement outcomes. Moreover, we observe that the soft decoder achieves a threshold 25% higher than any hard decoder for phenomenological noise with Gaussian soft measurement outcomes. We also introduce a soft measurement error model with amplitude damping, in which measurement time leads to a trade-off between measurement resolution and additional disturbance of the qubits. Under this model we observe that the performance of the surface code is very sensitive to the choice of the measurement time - for a distance-19 surface code, a five-fold increase in measurement time can lead to a thousand-fold increase in logical error rate. Moreover, the measurement time that minimizes the physical error rate is distinct from the one that minimizes the logical performance, pointing to the benefits of jointly optimizing the physical and quantum error correction layers.
531 - Roee Ozeri 2013
Methods borrowed from the world of quantum information processing have lately been used to enhance the signal-to-noise ratio of quantum detectors. Here we analyze the use of stabilizer quantum error-correction codes for the purpose of signal detection. We show that using quantum error-correction codes a small signal can be measured with Heisenberg limited uncertainty even in the presence of noise. We analyze the limitations to the measurement of signals of interest and discuss two simple examples. The possibility of long coherence times, combined with their Heisenberg limited sensitivity to certain signals, pose quantum error-correction codes as a promising detection scheme.
126 - Michael R. Geller 2020
We review an experimental technique used to correct state preparation and measurement errors on gate-based quantum computers, and discuss its rigorous justification. Within a specific biased quantum measurement model, we prove that nonideal measurement of an arbitrary $n$-qubit state is equivalent to ideal projective measurement followed by a classical Markov process $Gamma$ acting on the output probability distribution. Measurement errors can be removed, with rigorous justification, if $Gamma$ can be learned and inverted. We show how to obtain $Gamma$ from gate set tomography (R. Blume-Kohout et al., arXiv:1310.4492) and apply the error correction technique to single IBM Q superconducting qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا