On infinite matrices, Schur products, and operator measures


Abstract in English

Measures with values in the set of sesquilinear forms on a subspace of a Hilbert space are of interest in quantum mechanics, since they can be interpreted as observables with only a restricted set of possible measurement preparations. In this paper, we consider the question under which conditions such a measure extends to an operator valued measure, in the concrete setting where the measure is defined on the Borel sets of the interval $[0,2pi)$ and is covariant with respect to shifts. In this case, the measure is characterized with a single infinite matrix, and it turns out that a basic sufficient condition for the extensibility is that the matrix be a Schur multiplier. Accordingly, we also study the connection between the extensibility problem and the theory of Schur multipliers. In particular, we define some new norms for Schur multipliers.

Download