Do you want to publish a course? Click here

The classical capacity for continuous variable teleportation channel

68   0   0.0 ( 0 )
 Added by Tao Qin
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The process of quantum teleportation can be considered as a quantum channel. The exact classical capacity of the continuous variable teleportation channel is given. Also, the channel fidelity is derived. Consequently, the properties of the continuous variable quantum teleportation are discussed and interesting results are obtained.

rate research

Read More

The present paper is devoted to investigation of the classical capacity of infinite-dimensional quantum measurement channels. A number of usable conditions are introduced that enable us to apply previously obtained general results to specific models, in particular, to the multi-mode bosonic Gaussian measurement channels. An explicit formula for the classical capacity of the Gaussian measurement channel is obtained in this paper without assuming the global gauge symmetry, solely under certain threshold condition. The result is illustrated by the capacity computation for one-mode squeezed-noise heterodyne measurement channel.
Quantum communications using continuous variables are quite mature experimental techniques and the relevant theories have been extensively investigated with various methods. In this paper, we study the continuous variable quantum channels from a different angle, i.e., by exploring master equations. And we finally give explicitly the capacity of the channel we are studying. By the end of this paper, we derive the criterion for the optimal capacities of the Gaussian channel versus its fidelity.
60 - Masashi Ban 2002
A quantum channel is derived for continuous variable teleportation which is performed by means of an arbitrary entangled state and the standard protocol. When a Gaussian entangled state such as a two-mode squeezed-vacuum state is used, the continuous variable teleportation is equivalent to the thermalizing quantum channel. Continuous variable dense coding is also considered. Both the continuous variable teleportation and the continuous variable dense coding are characterized by the same function determined by the entangled state and the quantum measurement.
A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which are sent to two sending stations(Alices) and others to two receiving stations(bobs). The EPR entanglement initionally results from two-mode quadrature squeezed state light. Converting the squeezed component of one of EPR sources between amplitude and phase, the input quantum state at a sender will be reproduced at two receivers in turn. The switching system manipulated by squeezed state light might be developed as a practical quantum switch device for the communication and teleportation of quantum information.
We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the classical information provided by Alice. We study here the noise added by teleportation and compare its influence in the Gaussian and non-Gaussian settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا