Do you want to publish a course? Click here

Witnessing effective entanglement in a continuous variable prepare&measure setup and application to a QKD scheme using postselection

130   0   0.0 ( 0 )
 Added by Stefan Lorenz
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an experimental demonstration of effective entanglement in a prepare&measure type of quantum key distribution protocol. Coherent polarization states and heterodyne measurement to characterize the transmitted quantum states are used, thus enabling us to reconstruct directly their Q-function. By evaluating the excess noise of the states, we experimentally demonstrate that they fulfill a non-separability criterion previously presented by Rigas et al. [J. Rigas, O. Guhne, N. Lutkenhaus, Phys. Rev. A 73, 012341 (2006)]. For a restricted eavesdropping scenario we predict key rates using postselection of the heterodyne measurement results.



rate research

Read More

Entanglement and quantum communication are paradigmatic resources in quantum information science leading to correlations between systems that have no classical analogue. Correlations due to entanglement when communication is absent have for long been studied in Bell scenarios. Correlations due to quantum communication when entanglement is absent have been studied extensively in prepare-and-measure scenarios in the last decade. Here, following up on a recent companion paper [arXiv:2103.10748], we set out to understand and investigate correlations in scenarios that involve both entanglement and communication, focusing on entanglement-assisted prepare-and-measure scenarios. We establish several elementary relations between standard classical and quantum communication and their entanglement-assisted counterparts. In particular, while it was already known that bits or qubits assisted by two-qubit entanglement between the sender and receiver constitute a stronger resource than bare bits or qubits, we show that higher-dimensional entanglement further enhance the power of bits or qubits. We also provide a characterisation of generalised dense coding protocols, a natural subset of entanglement-assisted quantum communication protocols, finding that they can be understood as standard quantum communication protocols in real-valued Hilbert space. Though such dense coding protocols can convey up to two bits of information, we provide evidence, perhaps counter-intuitively, that resources with a small information capacity, such as a bare qutrits, can sometimes produce stronger correlations. Along the way we leave several conjectures and conclude with a list of interesting open problems.
We investigate the correlations that can arise between Alice and Bob in prepare-and-measure communication scenarios where the source (Alice) and the measurement device (Bob) can share prior entanglement. The paradigmatic example of such a scenario is the quantum dense coding protocol, where the communication capacity of a qudit can be doubled if a two-qudit entangled state is shared between Alice and Bob. We provide examples of correlations that actually require more general protocols based on higher-dimensional entangled states. This motivates us to investigate the set of correlations that can be obtained from communicating either a classical or a quantum $d$-dimensional system in the presence of an unlimited amount of entanglement. We show how such correlations can be characterized by a hierarchy of semidefinite programming relaxations by reducing the problem to a non-commutative polynomial optimization problem. We also introduce an alternative relaxation hierarchy based on the notion of informationally-restricted quantum correlations, which, though it represents a strict (non-converging) relaxation scheme, is less computationally demanding. As an application, we introduce device-independent tests of the dimension of classical and quantum systems that, in contrast to previous results, do not make the implicit assumption that Alice and Bob share no entanglement. We also establish several relations between communication with and without entanglement as resources for creating correlations.
We consider the problem of certification of arbitrary ensembles of pure states and projective measurements solely from the experimental statistics in the prepare-and-measure scenario assuming the upper bound on the dimension of the Hilbert space. To this aim, we propose a universal and intuitive scheme based on establishing perfect correlations between target states and suitably-chosen projective measurements. The method works in all finite dimensions and allows for robust certification of the overlaps between arbitrary preparation states and between the corresponding measurement operators. Finally, we prove that for qubits, our technique can be used to robustly self-test arbitrary configurations of pure quantum states and projective measurements. These results pave the way towards the practical application of the prepare-and-measure paradigm to certification of quantum devices.
We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gauged using measures of the degree of inseparability and the degree of EPR paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.
The continuous-variable version of quantum key distribution (QKD) offers the advantages (over discrete-variable systems) of higher secret key rates in metropolitan areas as well as the use of standard telecom components that can operate at room temperature. An important step in the real-world adoption of continuous-variable QKD is the deployment of field tests over commercial fibers. Here we report two different field tests of a continuous-variable QKD system through commercial fiber networks in Xian and Guangzhou over distances of 30.02 km (12.48 dB) and 49.85 km (11.62 dB), respectively. We achieve secure key rates two orders-of-magnitude higher than previous field test demonstrations. This is achieved by developing a fully automatic control system to create stable excess noise and by applying a rate-adaptive reconciliation protocol to achieve a high reconciliation efficiency with high success probability. Our results pave the way to achieving continuous-variable QKD in a metropolitan setting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا